miller-book/node192.html

442 lines
12 KiB
HTML
Raw Permalink Normal View History

<!DOCTYPE html>
<!--Converted with LaTeX2HTML 2002-2-1 (1.71)
original version by: Nikos Drakos, CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<TITLE>General (non-symmetric) triangle wave</TITLE>
<META NAME="description" CONTENT="General (non-symmetric) triangle wave">
<META NAME="keywords" CONTENT="book">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META NAME="Generator" CONTENT="LaTeX2HTML v2002-2-1">
<META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">
<LINK REL="STYLESHEET" HREF="book.css">
<LINK REL="previous" HREF="node191.html">
<LINK REL="up" HREF="node188.html">
<LINK REL="next" HREF="node193.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
2022-04-12 23:32:40 -03:00
<A ID="tex2html3440"
HREF="node193.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next.png"></A>
2022-04-12 23:32:40 -03:00
<A ID="tex2html3434"
HREF="node188.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up.png"></A>
2022-04-12 23:32:40 -03:00
<A ID="tex2html3430"
HREF="node191.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="prev.png"></A>
2022-04-12 23:32:40 -03:00
<A ID="tex2html3436"
HREF="node4.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents.png"></A>
2022-04-12 23:32:40 -03:00
<A ID="tex2html3438"
HREF="node201.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index.png"></A>
<BR>
2022-04-12 23:32:40 -03:00
<B> Next:</B> <A ID="tex2html3441"
HREF="node193.html">Predicting and controlling foldover</A>
2022-04-12 23:32:40 -03:00
<B> Up:</B> <A ID="tex2html3435"
HREF="node188.html">Fourier series of the</A>
2022-04-12 23:32:40 -03:00
<B> Previous:</B> <A ID="tex2html3431"
HREF="node191.html">Square and symmetric triangle</A>
2022-04-12 23:32:40 -03:00
&nbsp; <B> <A ID="tex2html3437"
HREF="node4.html">Contents</A></B>
2022-04-12 23:32:40 -03:00
&nbsp; <B> <A ID="tex2html3439"
HREF="node201.html">Index</A></B>
<BR>
<BR>
<!--End of Navigation Panel-->
2022-04-12 23:32:40 -03:00
<H2><A ID="SECTION001434000000000000000"></A>
<A ID="sect10.gentriangle"></A>
<BR>
General (non-symmetric) triangle wave
</H2>
<P>
2022-04-12 23:32:40 -03:00
<DIV ALIGN="CENTER"><A ID="fig10.07"></A><A ID="14434"></A>
<TABLE>
<CAPTION ALIGN="BOTTOM"><STRONG>Figure 10.7:</STRONG>
Non-symmetric triangle wave, with vertices at <IMG
WIDTH="47" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img69.png"
ALT="$(M, 1)$"> and
<IMG
WIDTH="93" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img70.png"
ALT="$(N-M, -1)$">.</CAPTION>
<TR><TD><IMG
WIDTH="474" HEIGHT="123" BORDER="0"
SRC="img1342.png"
ALT="\begin{figure}\psfig{file=figs/fig10.07.ps}\end{figure}"></TD></TR>
</TABLE>
</DIV>
<P>
A general, non-symmetric triangle wave appears in Figure <A HREF="#fig10.07">10.7</A>. Here
we have arranged the cycle so that, first, the DC component is zero (so that
the two corners have equal and opposite heights), and second, so that the
midpoint of the shorter segment goes through the point <IMG
WIDTH="38" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img1343.png"
ALT="$(0,0)$">.
<P>
The two line segments have slopes equal to <IMG
WIDTH="35" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img1344.png"
ALT="$1/M$"> and <IMG
WIDTH="103" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img1345.png"
ALT="$-2/(N-2M)$">, so the
decomposition into component parabolic waves is given by:
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
x[n] = {{N^2} \over {MN - 2{M^2}}} (p[n-M] - p[n+M])
\end{displaymath}
-->
<IMG
WIDTH="291" HEIGHT="42" BORDER="0"
SRC="img1346.png"
ALT="\begin{displaymath}
x[n] = {{N^2} \over {MN - 2{M^2}}} (p[n-M] - p[n+M])
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
(here we're using the periodicity of <IMG
WIDTH="29" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img1347.png"
ALT="$p[n]$"> to replace <IMG
WIDTH="112" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img1348.png"
ALT="$p[n-(N-M)]$"> by
<IMG
WIDTH="66" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img1349.png"
ALT="$p[n+M]$">).)
<P>
The most general way of dealing with linear combinations of elementary
(parabolic and/or sawtooth) waves is to go back to the complex Fourier
series, as
we did in finding the series for the elementary waves themselves. But in this
particular case we can use a trigonometric identity to avoid the extra work of
converting back and forth. First we plug in the real-valued Fourier series:
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
x[n] = {{N^2} \over {2{\pi ^ 2} (MN - 2{M^2})}} \left [
\parbox[t][0.12in]{0in}{\mbox{}}
{\cos ( \omega (n-M))} - {\cos ( \omega (n+M))}
\right .
\end{displaymath}
-->
<IMG
WIDTH="407" HEIGHT="45" BORDER="0"
SRC="img1350.png"
ALT="\begin{displaymath}
x[n] = {{N^2} \over {2{\pi ^ 2} (MN - 2{M^2})}} \left [
\p...
...{}}
{\cos ( \omega (n-M))} - {\cos ( \omega (n+M))}
\right .
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
\left .
+ {{\cos ( 2 \omega (n-M)) - \cos ( 2 \omega (n+M))} \over 4}
+ \cdots
\right ]
\end{displaymath}
-->
<IMG
WIDTH="298" HEIGHT="45" BORDER="0"
SRC="img1351.png"
ALT="\begin{displaymath}
\left .
+ {{\cos ( 2 \omega (n-M)) - \cos ( 2 \omega (n+M))} \over 4}
+ \cdots
\right ]
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
Now we use the identity,
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
\cos(a) - \cos(b) = 2 \sin({{b-a}\over 2}) \sin({{a+b}\over 2})
\end{displaymath}
-->
<IMG
WIDTH="275" HEIGHT="39" BORDER="0"
SRC="img1352.png"
ALT="\begin{displaymath}
\cos(a) - \cos(b) = 2 \sin({{b-a}\over 2}) \sin({{a+b}\over 2})
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
so that, for example,
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
{\cos ( \omega (n-M))} - {\cos ( \omega (n+M))} =
2 \sin (2 \pi M / N) \sin ( \omega n)
\end{displaymath}
-->
<IMG
WIDTH="396" HEIGHT="28" BORDER="0"
SRC="img1353.png"
ALT="\begin{displaymath}
{\cos ( \omega (n-M))} - {\cos ( \omega (n+M))} =
2 \sin (2 \pi M / N) \sin ( \omega n)
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
(Here again we used the definition of <!-- MATH
$\omega = 2 \pi / N$
-->
<IMG
WIDTH="74" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img1047.png"
ALT="$\omega=2\pi/N$">.) This is a
simplification since the first sine term does not depend on <IMG
WIDTH="13" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
SRC="img75.png"
ALT="$n$">; it's
just an amplitude term. Applying the identity to all the terms of the expansion
for <IMG
WIDTH="31" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img80.png"
ALT="$x[n]$"> gives:
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
x[n] = a[1] \sin(\omega n) + a[2] \sin(2 \omega n) + \cdots
\end{displaymath}
-->
<IMG
WIDTH="271" HEIGHT="28" BORDER="0"
SRC="img1354.png"
ALT="\begin{displaymath}
x[n] = a[1] \sin(\omega n) + a[2] \sin(2 \omega n) + \cdots
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
where the amplitudes of the components are given by:
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
a[k] = {1 \over {{\pi ^ 2} (M/N - 2{{(M/N)}^2})}}
\cdot {{\sin (2 \pi k M / N) } \over {k^2}}
\end{displaymath}
-->
<IMG
WIDTH="311" HEIGHT="47" BORDER="0"
SRC="img1355.png"
ALT="\begin{displaymath}
a[k] = {1 \over {{\pi ^ 2} (M/N - 2{{(M/N)}^2})}}
\cdot {{\sin (2 \pi k M / N) } \over {k^2}}
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
Notice that the result does not depend separately on the values of <IMG
WIDTH="20" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
SRC="img86.png"
ALT="$M$"> and <IMG
WIDTH="18" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
SRC="img3.png"
ALT="$N$">,
but only on their ratio, <IMG
WIDTH="41" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img1356.png"
ALT="$M/N$"> (this is not surprising because the shape of
the waveform depends on this ratio). If we look at small values of <IMG
WIDTH="12" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
SRC="img58.png"
ALT="$k$">:
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
k < {{1} \over {4 M/N}}
\end{displaymath}
-->
<IMG
WIDTH="77" HEIGHT="42" BORDER="0"
SRC="img1357.png"
ALT="\begin{displaymath}
k &lt; {{1} \over {4 M/N}}
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
the argument of the sine function is less than <IMG
WIDTH="29" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img5.png"
ALT="$\pi /2$"> and using the
approximation <!-- MATH
$\sin(\theta) \approx \theta$
-->
<IMG
WIDTH="72" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img1358.png"
ALT="$\sin(\theta) \approx \theta$"> we find that <IMG
WIDTH="29" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img1359.png"
ALT="$a[k]$"> drops off
as <IMG
WIDTH="28" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img72.png"
ALT="$1/k$">, just as the partials of a sawtooth wave. But for larger values of
<IMG
WIDTH="12" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
SRC="img58.png"
ALT="$k$"> the sine term oscillates between 1 and -1, so that the amplitudes drop off
irregularly as <IMG
WIDTH="35" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img73.png"
ALT="$1/{k^2}$">.
<P>
Figure <A HREF="node194.html#fig10.08">10.8</A> shows the partial strengths with <IMG
WIDTH="41" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img1356.png"
ALT="$M/N$"> set to
0.03; here, our prediction is that the <IMG
WIDTH="28" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img72.png"
ALT="$1/k$"> dependence should extend to
<!-- MATH
$k \approx 1/(4\cdot 0.03) \approx 8.5$
-->
<IMG
WIDTH="151" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img1360.png"
ALT="$k \approx 1/(4\cdot 0.03) \approx 8.5$">, in rough agreement with the figure.
<P>
Another way to see why the partials should behave as <IMG
WIDTH="28" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img72.png"
ALT="$1/k$"> for low values of
<IMG
WIDTH="12" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
SRC="img58.png"
ALT="$k$"> and <IMG
WIDTH="35" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img73.png"
ALT="$1/{k^2}$"> thereafter, is to compare the period of a given partial with
the length of the short segment, <IMG
WIDTH="28" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
SRC="img1361.png"
ALT="$2M$">. For partials numbering less than
<IMG
WIDTH="49" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img1362.png"
ALT="$N/4M$">, the period is at least twice the length of the short segment, and at
that scale the waveform is nearly indistinguishable from a sawtooth wave.
For partials numbering in excess of <IMG
WIDTH="49" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img1363.png"
ALT="$N/2M$">, the two corners of the triangle
wave are at least one period apart, and at these higher frequencies the two
corners (each with <IMG
WIDTH="35" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img73.png"
ALT="$1/{k^2}$"> frequency dependence) are resolved from each
other. In the figure, the notch at partial 17 occurs at the wavelength
<!-- MATH
$N/2M \approx 1/17$
-->
<IMG
WIDTH="102" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img1364.png"
ALT="$N/2M \approx 1/17$">, at which wavelength the two corners are one cycle apart;
since the corners are opposite in sign they cancel each other.
<P>
<HR>
<!--Navigation Panel-->
2022-04-12 23:32:40 -03:00
<A ID="tex2html3440"
HREF="node193.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next.png"></A>
2022-04-12 23:32:40 -03:00
<A ID="tex2html3434"
HREF="node188.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up.png"></A>
2022-04-12 23:32:40 -03:00
<A ID="tex2html3430"
HREF="node191.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="prev.png"></A>
2022-04-12 23:32:40 -03:00
<A ID="tex2html3436"
HREF="node4.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents.png"></A>
2022-04-12 23:32:40 -03:00
<A ID="tex2html3438"
HREF="node201.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index.png"></A>
<BR>
2022-04-12 23:32:40 -03:00
<B> Next:</B> <A ID="tex2html3441"
HREF="node193.html">Predicting and controlling foldover</A>
2022-04-12 23:32:40 -03:00
<B> Up:</B> <A ID="tex2html3435"
HREF="node188.html">Fourier series of the</A>
2022-04-12 23:32:40 -03:00
<B> Previous:</B> <A ID="tex2html3431"
HREF="node191.html">Square and symmetric triangle</A>
2022-04-12 23:32:40 -03:00
&nbsp; <B> <A ID="tex2html3437"
HREF="node4.html">Contents</A></B>
2022-04-12 23:32:40 -03:00
&nbsp; <B> <A ID="tex2html3439"
HREF="node201.html">Index</A></B>
<!--End of Navigation Panel-->
<ADDRESS>
Miller Puckette
2006-12-30
</ADDRESS>
</BODY>
</HTML>