442 lines
12 KiB
HTML
442 lines
12 KiB
HTML
<!DOCTYPE html>
|
|
|
|
<!--Converted with LaTeX2HTML 2002-2-1 (1.71)
|
|
original version by: Nikos Drakos, CBLU, University of Leeds
|
|
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
|
|
* with significant contributions from:
|
|
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
|
|
<HTML>
|
|
<HEAD>
|
|
|
|
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
|
|
|
|
|
<TITLE>General (non-symmetric) triangle wave</TITLE>
|
|
<META NAME="description" CONTENT="General (non-symmetric) triangle wave">
|
|
<META NAME="keywords" CONTENT="book">
|
|
<META NAME="resource-type" CONTENT="document">
|
|
<META NAME="distribution" CONTENT="global">
|
|
|
|
<META NAME="Generator" CONTENT="LaTeX2HTML v2002-2-1">
|
|
<META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">
|
|
|
|
<LINK REL="STYLESHEET" HREF="book.css">
|
|
|
|
<LINK REL="previous" HREF="node191.html">
|
|
<LINK REL="up" HREF="node188.html">
|
|
<LINK REL="next" HREF="node193.html">
|
|
</HEAD>
|
|
|
|
<BODY >
|
|
<!--Navigation Panel-->
|
|
<A ID="tex2html3440"
|
|
HREF="node193.html">
|
|
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
|
|
SRC="next.png"></A>
|
|
<A ID="tex2html3434"
|
|
HREF="node188.html">
|
|
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
|
|
SRC="up.png"></A>
|
|
<A ID="tex2html3430"
|
|
HREF="node191.html">
|
|
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
|
|
SRC="prev.png"></A>
|
|
<A ID="tex2html3436"
|
|
HREF="node4.html">
|
|
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
|
|
SRC="contents.png"></A>
|
|
<A ID="tex2html3438"
|
|
HREF="node201.html">
|
|
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
|
|
SRC="index.png"></A>
|
|
<BR>
|
|
<B> Next:</B> <A ID="tex2html3441"
|
|
HREF="node193.html">Predicting and controlling foldover</A>
|
|
<B> Up:</B> <A ID="tex2html3435"
|
|
HREF="node188.html">Fourier series of the</A>
|
|
<B> Previous:</B> <A ID="tex2html3431"
|
|
HREF="node191.html">Square and symmetric triangle</A>
|
|
<B> <A ID="tex2html3437"
|
|
HREF="node4.html">Contents</A></B>
|
|
<B> <A ID="tex2html3439"
|
|
HREF="node201.html">Index</A></B>
|
|
<BR>
|
|
<BR>
|
|
<!--End of Navigation Panel-->
|
|
|
|
<H2><A ID="SECTION001434000000000000000"></A>
|
|
<A ID="sect10.gentriangle"></A>
|
|
<BR>
|
|
General (non-symmetric) triangle wave
|
|
</H2>
|
|
|
|
<P>
|
|
|
|
<DIV ALIGN="CENTER"><A ID="fig10.07"></A><A ID="14434"></A>
|
|
<TABLE>
|
|
<CAPTION ALIGN="BOTTOM"><STRONG>Figure 10.7:</STRONG>
|
|
Non-symmetric triangle wave, with vertices at <IMG
|
|
WIDTH="47" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img69.png"
|
|
ALT="$(M, 1)$"> and
|
|
<IMG
|
|
WIDTH="93" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img70.png"
|
|
ALT="$(N-M, -1)$">.</CAPTION>
|
|
<TR><TD><IMG
|
|
WIDTH="474" HEIGHT="123" BORDER="0"
|
|
SRC="img1342.png"
|
|
ALT="\begin{figure}\psfig{file=figs/fig10.07.ps}\end{figure}"></TD></TR>
|
|
</TABLE>
|
|
</DIV>
|
|
|
|
<P>
|
|
A general, non-symmetric triangle wave appears in Figure <A HREF="#fig10.07">10.7</A>. Here
|
|
we have arranged the cycle so that, first, the DC component is zero (so that
|
|
the two corners have equal and opposite heights), and second, so that the
|
|
midpoint of the shorter segment goes through the point <IMG
|
|
WIDTH="38" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img1343.png"
|
|
ALT="$(0,0)$">.
|
|
|
|
<P>
|
|
The two line segments have slopes equal to <IMG
|
|
WIDTH="35" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img1344.png"
|
|
ALT="$1/M$"> and <IMG
|
|
WIDTH="103" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img1345.png"
|
|
ALT="$-2/(N-2M)$">, so the
|
|
decomposition into component parabolic waves is given by:
|
|
<BR><P></P>
|
|
<DIV ALIGN="CENTER">
|
|
<!-- MATH
|
|
\begin{displaymath}
|
|
x[n] = {{N^2} \over {MN - 2{M^2}}} (p[n-M] - p[n+M])
|
|
\end{displaymath}
|
|
-->
|
|
|
|
<IMG
|
|
WIDTH="291" HEIGHT="42" BORDER="0"
|
|
SRC="img1346.png"
|
|
ALT="\begin{displaymath}
|
|
x[n] = {{N^2} \over {MN - 2{M^2}}} (p[n-M] - p[n+M])
|
|
\end{displaymath}">
|
|
</DIV>
|
|
<BR CLEAR="ALL">
|
|
<P></P>
|
|
(here we're using the periodicity of <IMG
|
|
WIDTH="29" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img1347.png"
|
|
ALT="$p[n]$"> to replace <IMG
|
|
WIDTH="112" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img1348.png"
|
|
ALT="$p[n-(N-M)]$"> by
|
|
<IMG
|
|
WIDTH="66" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img1349.png"
|
|
ALT="$p[n+M]$">).)
|
|
|
|
<P>
|
|
The most general way of dealing with linear combinations of elementary
|
|
(parabolic and/or sawtooth) waves is to go back to the complex Fourier
|
|
series, as
|
|
we did in finding the series for the elementary waves themselves. But in this
|
|
particular case we can use a trigonometric identity to avoid the extra work of
|
|
converting back and forth. First we plug in the real-valued Fourier series:
|
|
<BR><P></P>
|
|
<DIV ALIGN="CENTER">
|
|
<!-- MATH
|
|
\begin{displaymath}
|
|
x[n] = {{N^2} \over {2{\pi ^ 2} (MN - 2{M^2})}} \left [
|
|
\parbox[t][0.12in]{0in}{\mbox{}}
|
|
{\cos ( \omega (n-M))} - {\cos ( \omega (n+M))}
|
|
\right .
|
|
\end{displaymath}
|
|
-->
|
|
|
|
<IMG
|
|
WIDTH="407" HEIGHT="45" BORDER="0"
|
|
SRC="img1350.png"
|
|
ALT="\begin{displaymath}
|
|
x[n] = {{N^2} \over {2{\pi ^ 2} (MN - 2{M^2})}} \left [
|
|
\p...
|
|
...{}}
|
|
{\cos ( \omega (n-M))} - {\cos ( \omega (n+M))}
|
|
\right .
|
|
\end{displaymath}">
|
|
</DIV>
|
|
<BR CLEAR="ALL">
|
|
<P></P>
|
|
<BR><P></P>
|
|
<DIV ALIGN="CENTER">
|
|
<!-- MATH
|
|
\begin{displaymath}
|
|
\left .
|
|
+ {{\cos ( 2 \omega (n-M)) - \cos ( 2 \omega (n+M))} \over 4}
|
|
+ \cdots
|
|
\right ]
|
|
\end{displaymath}
|
|
-->
|
|
|
|
<IMG
|
|
WIDTH="298" HEIGHT="45" BORDER="0"
|
|
SRC="img1351.png"
|
|
ALT="\begin{displaymath}
|
|
\left .
|
|
+ {{\cos ( 2 \omega (n-M)) - \cos ( 2 \omega (n+M))} \over 4}
|
|
+ \cdots
|
|
\right ]
|
|
\end{displaymath}">
|
|
</DIV>
|
|
<BR CLEAR="ALL">
|
|
<P></P>
|
|
Now we use the identity,
|
|
<BR><P></P>
|
|
<DIV ALIGN="CENTER">
|
|
<!-- MATH
|
|
\begin{displaymath}
|
|
\cos(a) - \cos(b) = 2 \sin({{b-a}\over 2}) \sin({{a+b}\over 2})
|
|
\end{displaymath}
|
|
-->
|
|
|
|
<IMG
|
|
WIDTH="275" HEIGHT="39" BORDER="0"
|
|
SRC="img1352.png"
|
|
ALT="\begin{displaymath}
|
|
\cos(a) - \cos(b) = 2 \sin({{b-a}\over 2}) \sin({{a+b}\over 2})
|
|
\end{displaymath}">
|
|
</DIV>
|
|
<BR CLEAR="ALL">
|
|
<P></P>
|
|
so that, for example,
|
|
<BR><P></P>
|
|
<DIV ALIGN="CENTER">
|
|
<!-- MATH
|
|
\begin{displaymath}
|
|
{\cos ( \omega (n-M))} - {\cos ( \omega (n+M))} =
|
|
2 \sin (2 \pi M / N) \sin ( \omega n)
|
|
\end{displaymath}
|
|
-->
|
|
|
|
<IMG
|
|
WIDTH="396" HEIGHT="28" BORDER="0"
|
|
SRC="img1353.png"
|
|
ALT="\begin{displaymath}
|
|
{\cos ( \omega (n-M))} - {\cos ( \omega (n+M))} =
|
|
2 \sin (2 \pi M / N) \sin ( \omega n)
|
|
\end{displaymath}">
|
|
</DIV>
|
|
<BR CLEAR="ALL">
|
|
<P></P>
|
|
(Here again we used the definition of <!-- MATH
|
|
$\omega = 2 \pi / N$
|
|
-->
|
|
<IMG
|
|
WIDTH="74" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img1047.png"
|
|
ALT="$\omega=2\pi/N$">.) This is a
|
|
simplification since the first sine term does not depend on <IMG
|
|
WIDTH="13" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
|
SRC="img75.png"
|
|
ALT="$n$">; it's
|
|
just an amplitude term. Applying the identity to all the terms of the expansion
|
|
for <IMG
|
|
WIDTH="31" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img80.png"
|
|
ALT="$x[n]$"> gives:
|
|
<BR><P></P>
|
|
<DIV ALIGN="CENTER">
|
|
<!-- MATH
|
|
\begin{displaymath}
|
|
x[n] = a[1] \sin(\omega n) + a[2] \sin(2 \omega n) + \cdots
|
|
\end{displaymath}
|
|
-->
|
|
|
|
<IMG
|
|
WIDTH="271" HEIGHT="28" BORDER="0"
|
|
SRC="img1354.png"
|
|
ALT="\begin{displaymath}
|
|
x[n] = a[1] \sin(\omega n) + a[2] \sin(2 \omega n) + \cdots
|
|
\end{displaymath}">
|
|
</DIV>
|
|
<BR CLEAR="ALL">
|
|
<P></P>
|
|
where the amplitudes of the components are given by:
|
|
<BR><P></P>
|
|
<DIV ALIGN="CENTER">
|
|
<!-- MATH
|
|
\begin{displaymath}
|
|
a[k] = {1 \over {{\pi ^ 2} (M/N - 2{{(M/N)}^2})}}
|
|
\cdot {{\sin (2 \pi k M / N) } \over {k^2}}
|
|
\end{displaymath}
|
|
-->
|
|
|
|
<IMG
|
|
WIDTH="311" HEIGHT="47" BORDER="0"
|
|
SRC="img1355.png"
|
|
ALT="\begin{displaymath}
|
|
a[k] = {1 \over {{\pi ^ 2} (M/N - 2{{(M/N)}^2})}}
|
|
\cdot {{\sin (2 \pi k M / N) } \over {k^2}}
|
|
\end{displaymath}">
|
|
</DIV>
|
|
<BR CLEAR="ALL">
|
|
<P></P>
|
|
Notice that the result does not depend separately on the values of <IMG
|
|
WIDTH="20" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
|
|
SRC="img86.png"
|
|
ALT="$M$"> and <IMG
|
|
WIDTH="18" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
|
|
SRC="img3.png"
|
|
ALT="$N$">,
|
|
but only on their ratio, <IMG
|
|
WIDTH="41" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img1356.png"
|
|
ALT="$M/N$"> (this is not surprising because the shape of
|
|
the waveform depends on this ratio). If we look at small values of <IMG
|
|
WIDTH="12" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
|
|
SRC="img58.png"
|
|
ALT="$k$">:
|
|
<BR><P></P>
|
|
<DIV ALIGN="CENTER">
|
|
<!-- MATH
|
|
\begin{displaymath}
|
|
k < {{1} \over {4 M/N}}
|
|
\end{displaymath}
|
|
-->
|
|
|
|
<IMG
|
|
WIDTH="77" HEIGHT="42" BORDER="0"
|
|
SRC="img1357.png"
|
|
ALT="\begin{displaymath}
|
|
k < {{1} \over {4 M/N}}
|
|
\end{displaymath}">
|
|
</DIV>
|
|
<BR CLEAR="ALL">
|
|
<P></P>
|
|
the argument of the sine function is less than <IMG
|
|
WIDTH="29" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img5.png"
|
|
ALT="$\pi /2$"> and using the
|
|
approximation <!-- MATH
|
|
$\sin(\theta) \approx \theta$
|
|
-->
|
|
<IMG
|
|
WIDTH="72" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img1358.png"
|
|
ALT="$\sin(\theta) \approx \theta$"> we find that <IMG
|
|
WIDTH="29" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img1359.png"
|
|
ALT="$a[k]$"> drops off
|
|
as <IMG
|
|
WIDTH="28" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img72.png"
|
|
ALT="$1/k$">, just as the partials of a sawtooth wave. But for larger values of
|
|
<IMG
|
|
WIDTH="12" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
|
|
SRC="img58.png"
|
|
ALT="$k$"> the sine term oscillates between 1 and -1, so that the amplitudes drop off
|
|
irregularly as <IMG
|
|
WIDTH="35" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img73.png"
|
|
ALT="$1/{k^2}$">.
|
|
|
|
<P>
|
|
Figure <A HREF="node194.html#fig10.08">10.8</A> shows the partial strengths with <IMG
|
|
WIDTH="41" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img1356.png"
|
|
ALT="$M/N$"> set to
|
|
0.03; here, our prediction is that the <IMG
|
|
WIDTH="28" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img72.png"
|
|
ALT="$1/k$"> dependence should extend to
|
|
<!-- MATH
|
|
$k \approx 1/(4\cdot 0.03) \approx 8.5$
|
|
-->
|
|
<IMG
|
|
WIDTH="151" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img1360.png"
|
|
ALT="$k \approx 1/(4\cdot 0.03) \approx 8.5$">, in rough agreement with the figure.
|
|
|
|
<P>
|
|
Another way to see why the partials should behave as <IMG
|
|
WIDTH="28" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img72.png"
|
|
ALT="$1/k$"> for low values of
|
|
<IMG
|
|
WIDTH="12" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
|
|
SRC="img58.png"
|
|
ALT="$k$"> and <IMG
|
|
WIDTH="35" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img73.png"
|
|
ALT="$1/{k^2}$"> thereafter, is to compare the period of a given partial with
|
|
the length of the short segment, <IMG
|
|
WIDTH="28" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
|
|
SRC="img1361.png"
|
|
ALT="$2M$">. For partials numbering less than
|
|
<IMG
|
|
WIDTH="49" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img1362.png"
|
|
ALT="$N/4M$">, the period is at least twice the length of the short segment, and at
|
|
that scale the waveform is nearly indistinguishable from a sawtooth wave.
|
|
For partials numbering in excess of <IMG
|
|
WIDTH="49" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img1363.png"
|
|
ALT="$N/2M$">, the two corners of the triangle
|
|
wave are at least one period apart, and at these higher frequencies the two
|
|
corners (each with <IMG
|
|
WIDTH="35" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img73.png"
|
|
ALT="$1/{k^2}$"> frequency dependence) are resolved from each
|
|
other. In the figure, the notch at partial 17 occurs at the wavelength
|
|
<!-- MATH
|
|
$N/2M \approx 1/17$
|
|
-->
|
|
<IMG
|
|
WIDTH="102" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img1364.png"
|
|
ALT="$N/2M \approx 1/17$">, at which wavelength the two corners are one cycle apart;
|
|
since the corners are opposite in sign they cancel each other.
|
|
|
|
<P>
|
|
<HR>
|
|
<!--Navigation Panel-->
|
|
<A ID="tex2html3440"
|
|
HREF="node193.html">
|
|
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
|
|
SRC="next.png"></A>
|
|
<A ID="tex2html3434"
|
|
HREF="node188.html">
|
|
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
|
|
SRC="up.png"></A>
|
|
<A ID="tex2html3430"
|
|
HREF="node191.html">
|
|
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
|
|
SRC="prev.png"></A>
|
|
<A ID="tex2html3436"
|
|
HREF="node4.html">
|
|
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
|
|
SRC="contents.png"></A>
|
|
<A ID="tex2html3438"
|
|
HREF="node201.html">
|
|
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
|
|
SRC="index.png"></A>
|
|
<BR>
|
|
<B> Next:</B> <A ID="tex2html3441"
|
|
HREF="node193.html">Predicting and controlling foldover</A>
|
|
<B> Up:</B> <A ID="tex2html3435"
|
|
HREF="node188.html">Fourier series of the</A>
|
|
<B> Previous:</B> <A ID="tex2html3431"
|
|
HREF="node191.html">Square and symmetric triangle</A>
|
|
<B> <A ID="tex2html3437"
|
|
HREF="node4.html">Contents</A></B>
|
|
<B> <A ID="tex2html3439"
|
|
HREF="node201.html">Index</A></B>
|
|
<!--End of Navigation Panel-->
|
|
<ADDRESS>
|
|
Miller Puckette
|
|
2006-12-30
|
|
</ADDRESS>
|
|
</BODY>
|
|
</HTML>
|