310 lines
8.2 KiB
HTML
310 lines
8.2 KiB
HTML
<!DOCTYPE html>
|
|
|
|
<!--Converted with LaTeX2HTML 2002-2-1 (1.71)
|
|
original version by: Nikos Drakos, CBLU, University of Leeds
|
|
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
|
|
* with significant contributions from:
|
|
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
|
|
<HTML>
|
|
<HEAD>
|
|
|
|
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
|
|
|
|
|
<TITLE>Waveshaping using Chebychev polynomials</TITLE>
|
|
<META NAME="description" CONTENT="Waveshaping using Chebychev polynomials">
|
|
<META NAME="keywords" CONTENT="book">
|
|
<META NAME="resource-type" CONTENT="document">
|
|
<META NAME="distribution" CONTENT="global">
|
|
|
|
<META NAME="Generator" CONTENT="LaTeX2HTML v2002-2-1">
|
|
<META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">
|
|
|
|
<LINK REL="STYLESHEET" HREF="book.css">
|
|
|
|
<LINK REL="next" HREF="node85.html">
|
|
<LINK REL="previous" HREF="node83.html">
|
|
<LINK REL="up" HREF="node80.html">
|
|
<LINK REL="next" HREF="node85.html">
|
|
</HEAD>
|
|
|
|
<BODY >
|
|
<!--Navigation Panel-->
|
|
<A ID="tex2html1802"
|
|
HREF="node85.html">
|
|
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
|
|
SRC="next.png"></A>
|
|
<A ID="tex2html1796"
|
|
HREF="node80.html">
|
|
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
|
|
SRC="up.png"></A>
|
|
<A ID="tex2html1790"
|
|
HREF="node83.html">
|
|
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
|
|
SRC="prev.png"></A>
|
|
<A ID="tex2html1798"
|
|
HREF="node4.html">
|
|
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
|
|
SRC="contents.png"></A>
|
|
<A ID="tex2html1800"
|
|
HREF="node201.html">
|
|
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
|
|
SRC="index.png"></A>
|
|
<BR>
|
|
<B> Next:</B> <A ID="tex2html1803"
|
|
HREF="node85.html">Waveshaping using an exponential</A>
|
|
<B> Up:</B> <A ID="tex2html1797"
|
|
HREF="node80.html">Examples</A>
|
|
<B> Previous:</B> <A ID="tex2html1791"
|
|
HREF="node83.html">Waveshaping and difference tones</A>
|
|
<B> <A ID="tex2html1799"
|
|
HREF="node4.html">Contents</A></B>
|
|
<B> <A ID="tex2html1801"
|
|
HREF="node201.html">Index</A></B>
|
|
<BR>
|
|
<BR>
|
|
<!--End of Navigation Panel-->
|
|
|
|
<H2><A ID="SECTION00954000000000000000">
|
|
Waveshaping using Chebychev polynomials</A>
|
|
</H2>
|
|
<A ID="sect5.chebychev"></A>
|
|
<P>
|
|
Example E05.chebychev.pd (Figure <A HREF="#fig05.12">5.12</A>) demonstrates how you can use waveshaping
|
|
to generate pure harmonics. We'll limit ourselves to a specific example here
|
|
in which we would like
|
|
to generate the pure fifth harmonic,
|
|
|
|
<DIV ALIGN="CENTER"><A ID="fig05.12"></A><A ID="5829"></A>
|
|
<TABLE>
|
|
<CAPTION ALIGN="BOTTOM"><STRONG>Figure 5.12:</STRONG>
|
|
Using Chebychev polynomials as waveshaping transfer functions.</CAPTION>
|
|
<TR><TD><IMG
|
|
WIDTH="411" HEIGHT="313" BORDER="0"
|
|
SRC="img494.png"
|
|
ALT="\begin{figure}\psfig{file=figs/fig05.12.ps}\end{figure}"></TD></TR>
|
|
</TABLE>
|
|
</DIV>
|
|
|
|
<BR><P></P>
|
|
<DIV ALIGN="CENTER">
|
|
<!-- MATH
|
|
\begin{displaymath}
|
|
\cos(5 \omega n)
|
|
\end{displaymath}
|
|
-->
|
|
|
|
<IMG
|
|
WIDTH="60" HEIGHT="28" BORDER="0"
|
|
SRC="img495.png"
|
|
ALT="\begin{displaymath}
|
|
\cos(5 \omega n)
|
|
\end{displaymath}">
|
|
</DIV>
|
|
<BR CLEAR="ALL">
|
|
<P></P>
|
|
by waveshaping a sinusoid
|
|
<BR><P></P>
|
|
<DIV ALIGN="CENTER">
|
|
<!-- MATH
|
|
\begin{displaymath}
|
|
x[n] = \cos(\omega n)
|
|
\end{displaymath}
|
|
-->
|
|
|
|
<IMG
|
|
WIDTH="100" HEIGHT="28" BORDER="0"
|
|
SRC="img453.png"
|
|
ALT="\begin{displaymath}
|
|
x[n] = \cos (\omega n)
|
|
\end{displaymath}">
|
|
</DIV>
|
|
<BR CLEAR="ALL">
|
|
<P></P>
|
|
We
|
|
need to find a suitable transfer function <IMG
|
|
WIDTH="34" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img460.png"
|
|
ALT="$f(x)$">. First we recall
|
|
the formula for the waveshaping function <IMG
|
|
WIDTH="71" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img496.png"
|
|
ALT="$f(x) = x^5$">
|
|
(Page <A HREF="node78.html#eq-waveshaping"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]"
|
|
SRC="crossref.png"></A>), which gives first,
|
|
third and fifth harmonics:
|
|
<BR><P></P>
|
|
<DIV ALIGN="CENTER">
|
|
<!-- MATH
|
|
\begin{displaymath}
|
|
16 {x^5} = \cos (5 \omega n) + 5 \cos(3 \omega n) + 10 \cos(\omega n)
|
|
\end{displaymath}
|
|
-->
|
|
|
|
<IMG
|
|
WIDTH="296" HEIGHT="28" BORDER="0"
|
|
SRC="img497.png"
|
|
ALT="\begin{displaymath}
|
|
16 {x^5} = \cos (5 \omega n) + 5 \cos(3 \omega n) + 10 \cos(\omega n)
|
|
\end{displaymath}">
|
|
</DIV>
|
|
<BR CLEAR="ALL">
|
|
<P></P>
|
|
Next we add a suitable multiple of <IMG
|
|
WIDTH="19" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
|
|
SRC="img498.png"
|
|
ALT="$x^3$"> to
|
|
cancel the third harmonic:
|
|
<BR><P></P>
|
|
<DIV ALIGN="CENTER">
|
|
<!-- MATH
|
|
\begin{displaymath}
|
|
16 {x^5} - 20 {x^3} = \cos (5 \omega n) - 5 \cos(\omega n)
|
|
\end{displaymath}
|
|
-->
|
|
|
|
<IMG
|
|
WIDTH="248" HEIGHT="28" BORDER="0"
|
|
SRC="img499.png"
|
|
ALT="\begin{displaymath}
|
|
16 {x^5} - 20 {x^3} = \cos (5 \omega n) - 5 \cos(\omega n)
|
|
\end{displaymath}">
|
|
</DIV>
|
|
<BR CLEAR="ALL">
|
|
<P></P>
|
|
and then a multiple of <IMG
|
|
WIDTH="12" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
|
SRC="img243.png"
|
|
ALT="$x$"> to cancel the first harmonic:
|
|
<BR><P></P>
|
|
<DIV ALIGN="CENTER">
|
|
<!-- MATH
|
|
\begin{displaymath}
|
|
16 {x^5} - 20 {x^3} + 5 x = \cos (5 \omega n)
|
|
\end{displaymath}
|
|
-->
|
|
|
|
<IMG
|
|
WIDTH="201" HEIGHT="28" BORDER="0"
|
|
SRC="img500.png"
|
|
ALT="\begin{displaymath}
|
|
16 {x^5} - 20 {x^3} + 5 x = \cos (5 \omega n)
|
|
\end{displaymath}">
|
|
</DIV>
|
|
<BR CLEAR="ALL">
|
|
<P></P>
|
|
So for our waveshaping function we choose
|
|
<BR><P></P>
|
|
<DIV ALIGN="CENTER">
|
|
<!-- MATH
|
|
\begin{displaymath}
|
|
f(x) = 16 {x^5} - 20 {x^3} + 5 x
|
|
\end{displaymath}
|
|
-->
|
|
|
|
<IMG
|
|
WIDTH="170" HEIGHT="28" BORDER="0"
|
|
SRC="img501.png"
|
|
ALT="\begin{displaymath}
|
|
f(x) = 16 {x^5} - 20 {x^3} + 5 x
|
|
\end{displaymath}">
|
|
</DIV>
|
|
<BR CLEAR="ALL">
|
|
<P></P>
|
|
This procedure allows us to isolate any desired harmonic; the resulting
|
|
functions <IMG
|
|
WIDTH="13" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img112.png"
|
|
ALT="$f$"> are known as
|
|
<A ID="5840"></A><I>Chebychev polynomials</I> [<A
|
|
HREF="node202.html#r-lebrun79">Leb79</A>].
|
|
|
|
<P>
|
|
To incorporate this in a waveshaping instrument, we simply build a patch
|
|
that works as in Figure <A HREF="node78.html#fig05.05">5.5</A>, computing the expression
|
|
<BR><P></P>
|
|
<DIV ALIGN="CENTER">
|
|
<!-- MATH
|
|
\begin{displaymath}
|
|
x[n] = f( a[n] \cos(\omega n))
|
|
\end{displaymath}
|
|
-->
|
|
|
|
<IMG
|
|
WIDTH="151" HEIGHT="28" BORDER="0"
|
|
SRC="img502.png"
|
|
ALT="\begin{displaymath}
|
|
x[n] = f( a[n] \cos(\omega n))
|
|
\end{displaymath}">
|
|
</DIV>
|
|
<BR CLEAR="ALL">
|
|
<P></P>
|
|
where <IMG
|
|
WIDTH="30" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img503.png"
|
|
ALT="$a[n]$"> is a suitable
|
|
<A ID="5844"></A><I>index</I>
|
|
which may vary as a function of the sample number <IMG
|
|
WIDTH="13" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
|
SRC="img75.png"
|
|
ALT="$n$">. When <IMG
|
|
WIDTH="11" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
|
SRC="img4.png"
|
|
ALT="$a$"> happens to
|
|
be one in value, out comes the pure fifth harmonic. Other values of <IMG
|
|
WIDTH="11" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
|
SRC="img4.png"
|
|
ALT="$a$">
|
|
give varying spectra which, in general, have first and third harmonics as
|
|
well as the fifth.
|
|
|
|
<P>
|
|
By suitably combining Chebychev polynomials we can fix any desired
|
|
superposition of components in the output waveform (again, as long as
|
|
the waveshaping index is one). But the real
|
|
promise of waveshaping--that by simply changing the index we can
|
|
manufacture spectra that evolve in interesting but controllable ways--is
|
|
not addressed, at least directly, in the Chebychev picture.
|
|
|
|
<P>
|
|
<HR>
|
|
<!--Navigation Panel-->
|
|
<A ID="tex2html1802"
|
|
HREF="node85.html">
|
|
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
|
|
SRC="next.png"></A>
|
|
<A ID="tex2html1796"
|
|
HREF="node80.html">
|
|
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
|
|
SRC="up.png"></A>
|
|
<A ID="tex2html1790"
|
|
HREF="node83.html">
|
|
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
|
|
SRC="prev.png"></A>
|
|
<A ID="tex2html1798"
|
|
HREF="node4.html">
|
|
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
|
|
SRC="contents.png"></A>
|
|
<A ID="tex2html1800"
|
|
HREF="node201.html">
|
|
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
|
|
SRC="index.png"></A>
|
|
<BR>
|
|
<B> Next:</B> <A ID="tex2html1803"
|
|
HREF="node85.html">Waveshaping using an exponential</A>
|
|
<B> Up:</B> <A ID="tex2html1797"
|
|
HREF="node80.html">Examples</A>
|
|
<B> Previous:</B> <A ID="tex2html1791"
|
|
HREF="node83.html">Waveshaping and difference tones</A>
|
|
<B> <A ID="tex2html1799"
|
|
HREF="node4.html">Contents</A></B>
|
|
<B> <A ID="tex2html1801"
|
|
HREF="node201.html">Index</A></B>
|
|
<!--End of Navigation Panel-->
|
|
<ADDRESS>
|
|
Miller Puckette
|
|
2006-12-30
|
|
</ADDRESS>
|
|
</BODY>
|
|
</HTML>
|