<!DOCTYPE html> <!--Converted with LaTeX2HTML 2002-2-1 (1.71) original version by: Nikos Drakos, CBLU, University of Leeds * revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan * with significant contributions from: Jens Lippmann, Marek Rouchal, Martin Wilck and others --> <HTML> <HEAD> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <TITLE>Waveshaping using Chebychev polynomials</TITLE> <META NAME="description" CONTENT="Waveshaping using Chebychev polynomials"> <META NAME="keywords" CONTENT="book"> <META NAME="resource-type" CONTENT="document"> <META NAME="distribution" CONTENT="global"> <META NAME="Generator" CONTENT="LaTeX2HTML v2002-2-1"> <META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css"> <LINK REL="STYLESHEET" HREF="book.css"> <LINK REL="next" HREF="node85.html"> <LINK REL="previous" HREF="node83.html"> <LINK REL="up" HREF="node80.html"> <LINK REL="next" HREF="node85.html"> </HEAD> <BODY > <!--Navigation Panel--> <A ID="tex2html1802" HREF="node85.html"> <IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next" SRC="next.png"></A> <A ID="tex2html1796" HREF="node80.html"> <IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up" SRC="up.png"></A> <A ID="tex2html1790" HREF="node83.html"> <IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous" SRC="prev.png"></A> <A ID="tex2html1798" HREF="node4.html"> <IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents" SRC="contents.png"></A> <A ID="tex2html1800" HREF="node201.html"> <IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index" SRC="index.png"></A> <BR> <B> Next:</B> <A ID="tex2html1803" HREF="node85.html">Waveshaping using an exponential</A> <B> Up:</B> <A ID="tex2html1797" HREF="node80.html">Examples</A> <B> Previous:</B> <A ID="tex2html1791" HREF="node83.html">Waveshaping and difference tones</A> <B> <A ID="tex2html1799" HREF="node4.html">Contents</A></B> <B> <A ID="tex2html1801" HREF="node201.html">Index</A></B> <BR> <BR> <!--End of Navigation Panel--> <H2><A ID="SECTION00954000000000000000"> Waveshaping using Chebychev polynomials</A> </H2> <A ID="sect5.chebychev"></A> <P> Example E05.chebychev.pd (Figure <A HREF="#fig05.12">5.12</A>) demonstrates how you can use waveshaping to generate pure harmonics. We'll limit ourselves to a specific example here in which we would like to generate the pure fifth harmonic, <DIV ALIGN="CENTER"><A ID="fig05.12"></A><A ID="5829"></A> <TABLE> <CAPTION ALIGN="BOTTOM"><STRONG>Figure 5.12:</STRONG> Using Chebychev polynomials as waveshaping transfer functions.</CAPTION> <TR><TD><IMG WIDTH="411" HEIGHT="313" BORDER="0" SRC="img494.png" ALT="\begin{figure}\psfig{file=figs/fig05.12.ps}\end{figure}"></TD></TR> </TABLE> </DIV> <BR><P></P> <DIV ALIGN="CENTER"> <!-- MATH \begin{displaymath} \cos(5 \omega n) \end{displaymath} --> <IMG WIDTH="60" HEIGHT="28" BORDER="0" SRC="img495.png" ALT="\begin{displaymath} \cos(5 \omega n) \end{displaymath}"> </DIV> <BR CLEAR="ALL"> <P></P> by waveshaping a sinusoid <BR><P></P> <DIV ALIGN="CENTER"> <!-- MATH \begin{displaymath} x[n] = \cos(\omega n) \end{displaymath} --> <IMG WIDTH="100" HEIGHT="28" BORDER="0" SRC="img453.png" ALT="\begin{displaymath} x[n] = \cos (\omega n) \end{displaymath}"> </DIV> <BR CLEAR="ALL"> <P></P> We need to find a suitable transfer function <IMG WIDTH="34" HEIGHT="32" ALIGN="MIDDLE" BORDER="0" SRC="img460.png" ALT="$f(x)$">. First we recall the formula for the waveshaping function <IMG WIDTH="71" HEIGHT="34" ALIGN="MIDDLE" BORDER="0" SRC="img496.png" ALT="$f(x) = x^5$"> (Page <A HREF="node78.html#eq-waveshaping"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>), which gives first, third and fifth harmonics: <BR><P></P> <DIV ALIGN="CENTER"> <!-- MATH \begin{displaymath} 16 {x^5} = \cos (5 \omega n) + 5 \cos(3 \omega n) + 10 \cos(\omega n) \end{displaymath} --> <IMG WIDTH="296" HEIGHT="28" BORDER="0" SRC="img497.png" ALT="\begin{displaymath} 16 {x^5} = \cos (5 \omega n) + 5 \cos(3 \omega n) + 10 \cos(\omega n) \end{displaymath}"> </DIV> <BR CLEAR="ALL"> <P></P> Next we add a suitable multiple of <IMG WIDTH="19" HEIGHT="16" ALIGN="BOTTOM" BORDER="0" SRC="img498.png" ALT="$x^3$"> to cancel the third harmonic: <BR><P></P> <DIV ALIGN="CENTER"> <!-- MATH \begin{displaymath} 16 {x^5} - 20 {x^3} = \cos (5 \omega n) - 5 \cos(\omega n) \end{displaymath} --> <IMG WIDTH="248" HEIGHT="28" BORDER="0" SRC="img499.png" ALT="\begin{displaymath} 16 {x^5} - 20 {x^3} = \cos (5 \omega n) - 5 \cos(\omega n) \end{displaymath}"> </DIV> <BR CLEAR="ALL"> <P></P> and then a multiple of <IMG WIDTH="12" HEIGHT="13" ALIGN="BOTTOM" BORDER="0" SRC="img243.png" ALT="$x$"> to cancel the first harmonic: <BR><P></P> <DIV ALIGN="CENTER"> <!-- MATH \begin{displaymath} 16 {x^5} - 20 {x^3} + 5 x = \cos (5 \omega n) \end{displaymath} --> <IMG WIDTH="201" HEIGHT="28" BORDER="0" SRC="img500.png" ALT="\begin{displaymath} 16 {x^5} - 20 {x^3} + 5 x = \cos (5 \omega n) \end{displaymath}"> </DIV> <BR CLEAR="ALL"> <P></P> So for our waveshaping function we choose <BR><P></P> <DIV ALIGN="CENTER"> <!-- MATH \begin{displaymath} f(x) = 16 {x^5} - 20 {x^3} + 5 x \end{displaymath} --> <IMG WIDTH="170" HEIGHT="28" BORDER="0" SRC="img501.png" ALT="\begin{displaymath} f(x) = 16 {x^5} - 20 {x^3} + 5 x \end{displaymath}"> </DIV> <BR CLEAR="ALL"> <P></P> This procedure allows us to isolate any desired harmonic; the resulting functions <IMG WIDTH="13" HEIGHT="30" ALIGN="MIDDLE" BORDER="0" SRC="img112.png" ALT="$f$"> are known as <A ID="5840"></A><I>Chebychev polynomials</I> [<A HREF="node202.html#r-lebrun79">Leb79</A>]. <P> To incorporate this in a waveshaping instrument, we simply build a patch that works as in Figure <A HREF="node78.html#fig05.05">5.5</A>, computing the expression <BR><P></P> <DIV ALIGN="CENTER"> <!-- MATH \begin{displaymath} x[n] = f( a[n] \cos(\omega n)) \end{displaymath} --> <IMG WIDTH="151" HEIGHT="28" BORDER="0" SRC="img502.png" ALT="\begin{displaymath} x[n] = f( a[n] \cos(\omega n)) \end{displaymath}"> </DIV> <BR CLEAR="ALL"> <P></P> where <IMG WIDTH="30" HEIGHT="32" ALIGN="MIDDLE" BORDER="0" SRC="img503.png" ALT="$a[n]$"> is a suitable <A ID="5844"></A><I>index</I> which may vary as a function of the sample number <IMG WIDTH="13" HEIGHT="13" ALIGN="BOTTOM" BORDER="0" SRC="img75.png" ALT="$n$">. When <IMG WIDTH="11" HEIGHT="13" ALIGN="BOTTOM" BORDER="0" SRC="img4.png" ALT="$a$"> happens to be one in value, out comes the pure fifth harmonic. Other values of <IMG WIDTH="11" HEIGHT="13" ALIGN="BOTTOM" BORDER="0" SRC="img4.png" ALT="$a$"> give varying spectra which, in general, have first and third harmonics as well as the fifth. <P> By suitably combining Chebychev polynomials we can fix any desired superposition of components in the output waveform (again, as long as the waveshaping index is one). But the real promise of waveshaping--that by simply changing the index we can manufacture spectra that evolve in interesting but controllable ways--is not addressed, at least directly, in the Chebychev picture. <P> <HR> <!--Navigation Panel--> <A ID="tex2html1802" HREF="node85.html"> <IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next" SRC="next.png"></A> <A ID="tex2html1796" HREF="node80.html"> <IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up" SRC="up.png"></A> <A ID="tex2html1790" HREF="node83.html"> <IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous" SRC="prev.png"></A> <A ID="tex2html1798" HREF="node4.html"> <IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents" SRC="contents.png"></A> <A ID="tex2html1800" HREF="node201.html"> <IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index" SRC="index.png"></A> <BR> <B> Next:</B> <A ID="tex2html1803" HREF="node85.html">Waveshaping using an exponential</A> <B> Up:</B> <A ID="tex2html1797" HREF="node80.html">Examples</A> <B> Previous:</B> <A ID="tex2html1791" HREF="node83.html">Waveshaping and difference tones</A> <B> <A ID="tex2html1799" HREF="node4.html">Contents</A></B> <B> <A ID="tex2html1801" HREF="node201.html">Index</A></B> <!--End of Navigation Panel--> <ADDRESS> Miller Puckette 2006-12-30 </ADDRESS> </BODY> </HTML>