<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN"> <!--Converted with LaTeX2HTML 2002-2-1 (1.71) original version by: Nikos Drakos, CBLU, University of Leeds * revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan * with significant contributions from: Jens Lippmann, Marek Rouchal, Martin Wilck and others --> <HTML> <HEAD> <TITLE>Wavetables and samplers</TITLE> <META NAME="description" CONTENT="Wavetables and samplers"> <META NAME="keywords" CONTENT="book"> <META NAME="resource-type" CONTENT="document"> <META NAME="distribution" CONTENT="global"> <META NAME="Generator" CONTENT="LaTeX2HTML v2002-2-1"> <META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css"> <LINK REL="STYLESHEET" HREF="book.css"> <LINK REL="next" HREF="node40.html"> <LINK REL="previous" HREF="node7.html"> <LINK REL="up" HREF="book.html"> <LINK REL="next" HREF="node27.html"> </HEAD> <BODY > <!--Navigation Panel--> <A NAME="tex2html919" HREF="node27.html"> <IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next" SRC="file:/usr/local/share/lib/latex2html/icons/next.png"></A> <A NAME="tex2html913" HREF="book.html"> <IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up" SRC="file:/usr/local/share/lib/latex2html/icons/up.png"></A> <A NAME="tex2html907" HREF="node25.html"> <IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous" SRC="file:/usr/local/share/lib/latex2html/icons/prev.png"></A> <A NAME="tex2html915" HREF="node4.html"> <IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents" SRC="file:/usr/local/share/lib/latex2html/icons/contents.png"></A> <A NAME="tex2html917" HREF="node201.html"> <IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index" SRC="file:/usr/local/share/lib/latex2html/icons/index.png"></A> <BR> <B> Next:</B> <A NAME="tex2html920" HREF="node27.html">The Wavetable Oscillator</A> <B> Up:</B> <A NAME="tex2html914" HREF="book.html">book</A> <B> Previous:</B> <A NAME="tex2html908" HREF="node25.html">Exercises</A> <B> <A NAME="tex2html916" HREF="node4.html">Contents</A></B> <B> <A NAME="tex2html918" HREF="node201.html">Index</A></B> <BR> <BR> <!--End of Navigation Panel--> <H1><A NAME="SECTION00600000000000000000"></A> <A NAME="chapter-wavetable"></A> <BR> Wavetables and samplers </H1> <P> In Chapter 1 we treated audio signals as if they always flowed by in a continuous stream at some sample rate. The sample rate isn't really a quality of the audio signal, but rather it specifies how fast the individual samples should flow into or out of the computer. But audio signals are at bottom just sequences of numbers, and in practice there is no requirement that they be ``played" sequentially. Another, complementary view is that they can be stored in memory, and, later, they can be read back in any order--forward, backward, back and forth, or totally at random. An inexhaustible range of new possibilities opens up. <P> For many years (roughly 1950-1990), magnetic tape served as the main storage medium for sounds. Tapes were passed back and forth across magnetic pickups to play the signals back in real time. Since 1995 or so, the predominant way of storing sounds has been to keep them as digital audio signals, which are read back with much greater freedom and facility than were the magnetic tapes. Many modes of use dating from the tape era are still current, including cutting, duplication, speed change, and time reversal. Other techniques, such as <I>waveshaping</I>, have come into their own only in the digital era. <P> Suppose we have a stored digital audio signal, which is just a sequence of samples (i.e., numbers) <IMG WIDTH="31" HEIGHT="32" ALIGN="MIDDLE" BORDER="0" SRC="img80.png" ALT="$x[n]$"> for <!-- MATH $n = 0, ..., N-1$ --> <IMG WIDTH="111" HEIGHT="30" ALIGN="MIDDLE" BORDER="0" SRC="img166.png" ALT="$n = 0, ..., N-1$">, where <IMG WIDTH="18" HEIGHT="14" ALIGN="BOTTOM" BORDER="0" SRC="img3.png" ALT="$N$"> is the length of the sequence. Then if we have an input signal <IMG WIDTH="30" HEIGHT="32" ALIGN="MIDDLE" BORDER="0" SRC="img2.png" ALT="$y[n]$"> (which we can imagine to be flowing in real time), we can use its values as indices to look up values of the stored signal <IMG WIDTH="31" HEIGHT="32" ALIGN="MIDDLE" BORDER="0" SRC="img80.png" ALT="$x[n]$">. This operation, called <A NAME="2151"></A><I>wavetable lookup</I>, gives us a new signal, <IMG WIDTH="30" HEIGHT="32" ALIGN="MIDDLE" BORDER="0" SRC="img167.png" ALT="$z[n]$">, calculated as: <BR><P></P> <DIV ALIGN="CENTER"> <!-- MATH \begin{displaymath} z[n] = x[y[n]] \end{displaymath} --> <IMG WIDTH="91" HEIGHT="28" BORDER="0" SRC="img168.png" ALT="\begin{displaymath} z[n] = x[y[n]] \end{displaymath}"> </DIV> <BR CLEAR="ALL"> <P></P> Schematically we represent this operation as shown in Figure <A HREF="#fig02.01">2.1</A>. <P> <DIV ALIGN="CENTER"><A NAME="fig02.01"></A><A NAME="2156"></A> <TABLE> <CAPTION ALIGN="BOTTOM"><STRONG>Figure 2.1:</STRONG> Diagram for wavetable lookup. The input is in samples, ranging approximately from 0 to the wavetable's size <IMG WIDTH="18" HEIGHT="14" ALIGN="BOTTOM" BORDER="0" SRC="img3.png" ALT="$N$">, depending on the interpolation scheme.</CAPTION> <TR><TD><IMG WIDTH="110" HEIGHT="175" BORDER="0" SRC="img169.png" ALT="\begin{figure}\psfig{file=figs/fig02.01.ps}\end{figure}"></TD></TR> </TABLE> </DIV> <P> Two complications arise. First, the input values, <IMG WIDTH="30" HEIGHT="32" ALIGN="MIDDLE" BORDER="0" SRC="img2.png" ALT="$y[n]$">, might lie outside the range <IMG WIDTH="80" HEIGHT="30" ALIGN="MIDDLE" BORDER="0" SRC="img170.png" ALT="$0, ..., N-1$">, in which case the wavetable <IMG WIDTH="31" HEIGHT="32" ALIGN="MIDDLE" BORDER="0" SRC="img80.png" ALT="$x[n]$"> has no value and the expression for the output <IMG WIDTH="30" HEIGHT="32" ALIGN="MIDDLE" BORDER="0" SRC="img167.png" ALT="$z[n]$"> is undefined. In this situation we might choose to <A NAME="2159"></A><I>clip</I> the input, that is, to substitute 0 for anything negative and <IMG WIDTH="45" HEIGHT="30" ALIGN="MIDDLE" BORDER="0" SRC="img171.png" ALT="$N-1$"> for anything N or greater. Alternatively, we might prefer to wrap the input around end to end. Here we'll adopt the convention that out-of-range samples are always clipped; when we need wraparound, we'll introduce another signal processing operation to do it for us. <P> The second complication is that the input values need not be integers; in other words they might fall between the points of the wavetable. In general, this is addressed by choosing some scheme for interpolating between the points of the wavetable. For the moment, though, we'll just round down to the nearest integer below the input. This is called <A NAME="2161"></A><I>non-interpolating</I> wavetable lookup, and its full definition is: <BR><P></P> <DIV ALIGN="CENTER"> <!-- MATH \begin{displaymath} z[n] = \left \{ { \begin{array}{ll} x[ \lfloor y[n] \rfloor ] & \mbox{if $0 \le y[n] < N-1$} \\ x[0] & \mbox{if $y[n] < 0$} \\ x[N-1] & \mbox{if $y[n] \ge N-1$} \\ \end{array} } \right . \end{displaymath} --> <IMG WIDTH="279" HEIGHT="64" BORDER="0" SRC="img172.png" ALT="\begin{displaymath} z[n] = \left \{ { \begin{array}{ll} x[ \lfloor y[n] \rflo... ...x[N-1] & \mbox{if $y[n] \ge N-1$} \\ \end{array} } \right . \end{displaymath}"> </DIV> <BR CLEAR="ALL"> <P></P> (where <!-- MATH $\lfloor y[n] \rfloor$ --> <IMG WIDTH="44" HEIGHT="32" ALIGN="MIDDLE" BORDER="0" SRC="img173.png" ALT="$\lfloor y[n] \rfloor$"> means, ``the greatest integer not exceeding <IMG WIDTH="30" HEIGHT="32" ALIGN="MIDDLE" BORDER="0" SRC="img2.png" ALT="$y[n]$">"). <P> Pictorally, we use <IMG WIDTH="28" HEIGHT="32" ALIGN="MIDDLE" BORDER="0" SRC="img174.png" ALT="$y[0]$"> (a number) as a location on the horizontal axis of the wavetable shown in Figure <A HREF="#fig02.01">2.1</A>, and the output, <IMG WIDTH="28" HEIGHT="32" ALIGN="MIDDLE" BORDER="0" SRC="img175.png" ALT="$z[0]$">, is whatever we get on the vertical axis; and the same for <IMG WIDTH="28" HEIGHT="32" ALIGN="MIDDLE" BORDER="0" SRC="img176.png" ALT="$y[1]$"> and <IMG WIDTH="28" HEIGHT="32" ALIGN="MIDDLE" BORDER="0" SRC="img177.png" ALT="$z[1]$"> and so on. The ``natural" range for the input <IMG WIDTH="30" HEIGHT="32" ALIGN="MIDDLE" BORDER="0" SRC="img2.png" ALT="$y[n]$"> is <!-- MATH $0 \le y[n] < N$ --> <IMG WIDTH="95" HEIGHT="32" ALIGN="MIDDLE" BORDER="0" SRC="img178.png" ALT="$0 \le y[n] < N$">. This is different from the usual range of an audio signal suitable for output from the computer, which ranges from -1 to 1 in our units. We'll see later that the usable range of input values, from 0 to <IMG WIDTH="18" HEIGHT="14" ALIGN="BOTTOM" BORDER="0" SRC="img3.png" ALT="$N$"> for non-interpolating lookup, shrinks slightly if interpolating lookup is used. <P> Figure <A HREF="#fig02.02">2.2</A> (part a) shows a wavetable and the result of using two different input signals as lookup indices into it. The wavetable contains 40 points, which are numbered from 0 to 39. In part (b), a <A NAME="2171"></A><I>sawtooth wave</I> is used as the input signal <IMG WIDTH="30" HEIGHT="32" ALIGN="MIDDLE" BORDER="0" SRC="img2.png" ALT="$y[n]$">. A sawtooth wave is nothing but a ramp function repeated end to end. In this example the sawtooth's range is from <IMG WIDTH="11" HEIGHT="13" ALIGN="BOTTOM" BORDER="0" SRC="img179.png" ALT="$0$"> to <IMG WIDTH="19" HEIGHT="13" ALIGN="BOTTOM" BORDER="0" SRC="img180.png" ALT="$40$"> (this is shown in the vertical axis). The sawtooth wave thus scans the wavetable from left to right--from the beginning point 0 to the endpoint 39--and does so every time it repeats. Over the fifty points shown in Figure <A HREF="#fig02.02">2.2</A> (part b) the sawtooth wave makes two and a half cycles. Its period is twenty samples, or in other words the frequency (in cycles per second) is <IMG WIDTH="39" HEIGHT="32" ALIGN="MIDDLE" BORDER="0" SRC="img181.png" ALT="$R/20$">. <P> <DIV ALIGN="CENTER"><A NAME="fig02.02"></A><A NAME="2176"></A> <TABLE> <CAPTION ALIGN="BOTTOM"><STRONG>Figure 2.2:</STRONG> Wavetable lookup: (a) a wavetable; (b) and (d) signal inputs for lookup; (c) and (e) the corresponding outputs.</CAPTION> <TR><TD><IMG WIDTH="471" HEIGHT="664" BORDER="0" SRC="img182.png" ALT="\begin{figure}\psfig{file=figs/fig02.02.ps}\end{figure}"></TD></TR> </TABLE> </DIV> <P> Part (c) of Figure <A HREF="#fig02.02">2.2</A> shows the result of applying wavetable lookup, using the table <IMG WIDTH="31" HEIGHT="32" ALIGN="MIDDLE" BORDER="0" SRC="img80.png" ALT="$x[n]$">, to the signal <IMG WIDTH="30" HEIGHT="32" ALIGN="MIDDLE" BORDER="0" SRC="img2.png" ALT="$y[n]$">. Since the sawtooth input simply reads out the contents of the wavetable from left to right, repeatedly, at a constant rate of precession, the result will be a new periodic signal, whose waveform (shape) is derived from <IMG WIDTH="31" HEIGHT="32" ALIGN="MIDDLE" BORDER="0" SRC="img80.png" ALT="$x[n]$"> and whose frequency is determined by the sawtooth wave <IMG WIDTH="30" HEIGHT="32" ALIGN="MIDDLE" BORDER="0" SRC="img2.png" ALT="$y[n]$">. <P> Parts (d) and (e) show an example where the wavetable is read in a nonuniform way; since the input signal rises from <IMG WIDTH="11" HEIGHT="13" ALIGN="BOTTOM" BORDER="0" SRC="img179.png" ALT="$0$"> to <IMG WIDTH="18" HEIGHT="14" ALIGN="BOTTOM" BORDER="0" SRC="img3.png" ALT="$N$"> and then later recedes to <IMG WIDTH="11" HEIGHT="13" ALIGN="BOTTOM" BORDER="0" SRC="img179.png" ALT="$0$">, we see the wavetable appear first forward, then frozen at its endpoint, then backward. The table is scanned from left to right and then, more quickly, from right to left. As in the previous example the incoming signal controls the speed of precession while the output's amplitudes are those of the wavetable. <P> <BR><HR> <!--Table of Child-Links--> <A NAME="CHILD_LINKS"><STRONG>Subsections</STRONG></A> <UL> <LI><A NAME="tex2html921" HREF="node27.html">The Wavetable Oscillator</A> <LI><A NAME="tex2html922" HREF="node28.html">Sampling</A> <LI><A NAME="tex2html923" HREF="node29.html">Enveloping samplers</A> <LI><A NAME="tex2html924" HREF="node30.html">Timbre stretching</A> <LI><A NAME="tex2html925" HREF="node31.html">Interpolation</A> <LI><A NAME="tex2html926" HREF="node32.html">Examples</A> <UL> <LI><A NAME="tex2html927" HREF="node33.html">Wavetable oscillator</A> <LI><A NAME="tex2html928" HREF="node34.html">Wavetable lookup in general</A> <LI><A NAME="tex2html929" HREF="node35.html">Using a wavetable as a sampler</A> <LI><A NAME="tex2html930" HREF="node36.html">Looping samplers</A> <LI><A NAME="tex2html931" HREF="node37.html">Overlapping sample looper</A> <LI><A NAME="tex2html932" HREF="node38.html">Automatic read point precession</A> </UL> <BR> <LI><A NAME="tex2html933" HREF="node39.html">Exercises</A> </UL> <!--End of Table of Child-Links--> <HR> <!--Navigation Panel--> <A NAME="tex2html919" HREF="node27.html"> <IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next" SRC="file:/usr/local/share/lib/latex2html/icons/next.png"></A> <A NAME="tex2html913" HREF="book.html"> <IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up" SRC="file:/usr/local/share/lib/latex2html/icons/up.png"></A> <A NAME="tex2html907" HREF="node25.html"> <IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous" SRC="file:/usr/local/share/lib/latex2html/icons/prev.png"></A> <A NAME="tex2html915" HREF="node4.html"> <IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents" SRC="file:/usr/local/share/lib/latex2html/icons/contents.png"></A> <A NAME="tex2html917" HREF="node201.html"> <IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index" SRC="file:/usr/local/share/lib/latex2html/icons/index.png"></A> <BR> <B> Next:</B> <A NAME="tex2html920" HREF="node27.html">The Wavetable Oscillator</A> <B> Up:</B> <A NAME="tex2html914" HREF="book.html">book</A> <B> Previous:</B> <A NAME="tex2html908" HREF="node25.html">Exercises</A> <B> <A NAME="tex2html916" HREF="node4.html">Contents</A></B> <B> <A NAME="tex2html918" HREF="node201.html">Index</A></B> <!--End of Navigation Panel--> <ADDRESS> Miller Puckette 2006-12-30 </ADDRESS> </BODY> </HTML>