miller-book/node188.html

304 lines
8.2 KiB
HTML
Raw Normal View History

<!DOCTYPE html>
<!--Converted with LaTeX2HTML 2002-2-1 (1.71)
original version by: Nikos Drakos, CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<TITLE>Fourier series of the elementary waveforms</TITLE>
<META NAME="description" CONTENT="Fourier series of the elementary waveforms">
<META NAME="keywords" CONTENT="book">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META NAME="Generator" CONTENT="LaTeX2HTML v2002-2-1">
<META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">
<LINK REL="STYLESHEET" HREF="book.css">
<LINK REL="next" HREF="node193.html">
<LINK REL="previous" HREF="node187.html">
<LINK REL="up" HREF="node184.html">
<LINK REL="next" HREF="node189.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
2022-04-12 23:32:40 -03:00
<A ID="tex2html3382"
HREF="node189.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next.png"></A>
2022-04-12 23:32:40 -03:00
<A ID="tex2html3376"
HREF="node184.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up.png"></A>
2022-04-12 23:32:40 -03:00
<A ID="tex2html3370"
HREF="node187.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="prev.png"></A>
2022-04-12 23:32:40 -03:00
<A ID="tex2html3378"
HREF="node4.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents.png"></A>
2022-04-12 23:32:40 -03:00
<A ID="tex2html3380"
HREF="node201.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index.png"></A>
<BR>
2022-04-12 23:32:40 -03:00
<B> Next:</B> <A ID="tex2html3383"
HREF="node189.html">Sawtooth wave</A>
2022-04-12 23:32:40 -03:00
<B> Up:</B> <A ID="tex2html3377"
HREF="node184.html">Classical waveforms</A>
2022-04-12 23:32:40 -03:00
<B> Previous:</B> <A ID="tex2html3371"
HREF="node187.html">Dissecting classical waveforms</A>
2022-04-12 23:32:40 -03:00
&nbsp; <B> <A ID="tex2html3379"
HREF="node4.html">Contents</A></B>
2022-04-12 23:32:40 -03:00
&nbsp; <B> <A ID="tex2html3381"
HREF="node201.html">Index</A></B>
<BR>
<BR>
<!--End of Navigation Panel-->
2022-04-12 23:32:40 -03:00
<H1><A ID="SECTION001430000000000000000"></A>
<A ID="sect10.spectra"></A>
<BR>
Fourier series of the elementary waveforms
</H1>
<P>
In general, given a repeating waveform <IMG
WIDTH="36" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img669.png"
ALT="$X[n]$">, we can evaluate its Fourier
series coefficients <IMG
WIDTH="33" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img1251.png"
ALT="$A[k]$"> by directly evaluating the Fourier transform:
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
A[k] = {1 \over N} {\cal FT}\{X[n]\}(k)
\end{displaymath}
-->
<IMG
WIDTH="164" HEIGHT="38" BORDER="0"
SRC="img1301.png"
ALT="\begin{displaymath}
A[k] = {1 \over N} {\cal FT}\{X[n]\}(k)
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
= {1 \over N} \left [ X[0] +
{U^{-k}} X[1] + \cdots +
{U^{-(N-1)k}} X[N-1] \right ]
\end{displaymath}
-->
<IMG
WIDTH="351" HEIGHT="38" BORDER="0"
SRC="img1302.png"
ALT="\begin{displaymath}
= {1 \over N} \left [ X[0] +
{U^{-k}} X[1] + \cdots +
{U^{-(N-1)k}} X[N-1] \right ]
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
but doing this directly for sawtooth and parabolic waves will require pages of
algebra (somewhat less if we were willing resort to differential calculus).
Instead, we rely on properties of the Fourier transform to relate the transform
of a signal <IMG
WIDTH="31" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img80.png"
ALT="$x[n]$"> with its
2022-04-12 23:32:40 -03:00
<A ID="14332"></A><I>first difference</I>,
defined as <IMG
WIDTH="105" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img1303.png"
ALT="$x[n] - x[n-1]$">. The first difference of the parabolic wave will
turn out to be a sawtooth, and that of a sawtooth will be simple enough to
evaluate directly, and thus we'll get the desired Fourier series.
<P>
In general, to evaluate the strength of the <IMG
WIDTH="12" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
SRC="img58.png"
ALT="$k$">th harmonic, we'll make the
assumption that <IMG
WIDTH="18" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
SRC="img3.png"
ALT="$N$"> is much larger than <IMG
WIDTH="12" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
SRC="img58.png"
ALT="$k$">, or equivalently, that <IMG
WIDTH="33" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img1304.png"
ALT="$k/N$"> is
negligible.
<P>
We start from the Time Shift Formula for Fourier Transforms
(Page <A HREF="node169.html#sect9.shift"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]"
SRC="crossref.png"></A>) setting the time shift to one sample:
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
{\cal FT}\{ x[n-1] \} =
\left [ \cos(k \omega) - i \sin (k \omega) \right ]
{\cal FT}\{ x[n] \}
\end{displaymath}
-->
<IMG
WIDTH="329" HEIGHT="28" BORDER="0"
SRC="img1305.png"
ALT="\begin{displaymath}
{\cal FT}\{ x[n-1] \} =
\left [ \cos(k \omega) - i \sin (k \omega) \right ]
{\cal FT}\{ x[n] \}
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
\approx (1 - i \omega k) {\cal FT}\{ x[n] \}
\end{displaymath}
-->
<IMG
WIDTH="148" HEIGHT="28" BORDER="0"
SRC="img1306.png"
ALT="\begin{displaymath}
\approx (1 - i \omega k) {\cal FT}\{ x[n] \}
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
Here we're using the assumption that, because <IMG
WIDTH="18" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
SRC="img3.png"
ALT="$N$"> is much larger than <IMG
WIDTH="12" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
SRC="img58.png"
ALT="$k$">,
<!-- MATH
$k \omega = 2\pi k / N$
-->
<IMG
WIDTH="91" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img1307.png"
ALT="$k \omega = 2\pi k / N$"> is much smaller than unity and we can make
approximations:
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
\cos(k \omega) \approx 1 \; , \; \sin(k \omega) \approx k \omega
\end{displaymath}
-->
<IMG
WIDTH="187" HEIGHT="28" BORDER="0"
SRC="img1308.png"
ALT="\begin{displaymath}
\cos(k \omega) \approx 1 \; , \; \sin(k \omega) \approx k \omega
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
which are good to within a small error, on the order of <IMG
WIDTH="53" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img1309.png"
ALT="$(k/N)^2$">.
Now we plug this result in to evaluate:
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
{\cal FT}\{ x[n] - x[n-1] \} \approx i \omega k {\cal FT}\{ x[n] \}
\end{displaymath}
-->
<IMG
WIDTH="257" HEIGHT="28" BORDER="0"
SRC="img1310.png"
ALT="\begin{displaymath}
{\cal FT}\{ x[n] - x[n-1] \} \approx i \omega k {\cal FT}\{ x[n] \}
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
<BR><HR>
<!--Table of Child-Links-->
2022-04-12 23:32:40 -03:00
<A ID="CHILD_LINKS"><STRONG>Subsections</STRONG></A>
<UL>
2022-04-12 23:32:40 -03:00
<LI><A ID="tex2html3384"
HREF="node189.html">Sawtooth wave</A>
2022-04-12 23:32:40 -03:00
<LI><A ID="tex2html3385"
HREF="node190.html">Parabolic wave</A>
2022-04-12 23:32:40 -03:00
<LI><A ID="tex2html3386"
HREF="node191.html">Square and symmetric triangle waves</A>
2022-04-12 23:32:40 -03:00
<LI><A ID="tex2html3387"
HREF="node192.html">General (non-symmetric) triangle wave</A>
</UL>
<!--End of Table of Child-Links-->
<HR>
<!--Navigation Panel-->
2022-04-12 23:32:40 -03:00
<A ID="tex2html3382"
HREF="node189.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next.png"></A>
2022-04-12 23:32:40 -03:00
<A ID="tex2html3376"
HREF="node184.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up.png"></A>
2022-04-12 23:32:40 -03:00
<A ID="tex2html3370"
HREF="node187.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="prev.png"></A>
2022-04-12 23:32:40 -03:00
<A ID="tex2html3378"
HREF="node4.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents.png"></A>
2022-04-12 23:32:40 -03:00
<A ID="tex2html3380"
HREF="node201.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index.png"></A>
<BR>
2022-04-12 23:32:40 -03:00
<B> Next:</B> <A ID="tex2html3383"
HREF="node189.html">Sawtooth wave</A>
2022-04-12 23:32:40 -03:00
<B> Up:</B> <A ID="tex2html3377"
HREF="node184.html">Classical waveforms</A>
2022-04-12 23:32:40 -03:00
<B> Previous:</B> <A ID="tex2html3371"
HREF="node187.html">Dissecting classical waveforms</A>
2022-04-12 23:32:40 -03:00
&nbsp; <B> <A ID="tex2html3379"
HREF="node4.html">Contents</A></B>
2022-04-12 23:32:40 -03:00
&nbsp; <B> <A ID="tex2html3381"
HREF="node201.html">Index</A></B>
<!--End of Navigation Panel-->
<ADDRESS>
Miller Puckette
2006-12-30
</ADDRESS>
</BODY>
</HTML>