2022-04-12 22:02:59 -03:00
|
|
|
<!DOCTYPE html>
|
2022-04-12 21:54:18 -03:00
|
|
|
|
|
|
|
<!--Converted with LaTeX2HTML 2002-2-1 (1.71)
|
|
|
|
original version by: Nikos Drakos, CBLU, University of Leeds
|
|
|
|
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
|
|
|
|
* with significant contributions from:
|
|
|
|
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
|
|
|
|
<HTML>
|
|
|
|
<HEAD>
|
2022-04-12 22:02:59 -03:00
|
|
|
|
|
|
|
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
|
|
|
|
|
|
|
|
2022-04-12 21:54:18 -03:00
|
|
|
<TITLE>Single Sideband Modulation</TITLE>
|
|
|
|
<META NAME="description" CONTENT="Single Sideband Modulation">
|
|
|
|
<META NAME="keywords" CONTENT="book">
|
|
|
|
<META NAME="resource-type" CONTENT="document">
|
|
|
|
<META NAME="distribution" CONTENT="global">
|
|
|
|
|
|
|
|
<META NAME="Generator" CONTENT="LaTeX2HTML v2002-2-1">
|
|
|
|
<META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">
|
|
|
|
|
|
|
|
<LINK REL="STYLESHEET" HREF="book.css">
|
|
|
|
|
|
|
|
<LINK REL="previous" HREF="node153.html">
|
|
|
|
<LINK REL="up" HREF="node151.html">
|
|
|
|
<LINK REL="next" HREF="node155.html">
|
|
|
|
</HEAD>
|
|
|
|
|
|
|
|
<BODY >
|
|
|
|
<!--Navigation Panel-->
|
2022-04-12 23:32:40 -03:00
|
|
|
<A ID="tex2html2869"
|
2022-04-12 21:54:18 -03:00
|
|
|
HREF="node155.html">
|
|
|
|
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
|
2022-04-12 22:02:59 -03:00
|
|
|
SRC="next.png"></A>
|
2022-04-12 23:32:40 -03:00
|
|
|
<A ID="tex2html2863"
|
2022-04-12 21:54:18 -03:00
|
|
|
HREF="node151.html">
|
|
|
|
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
|
2022-04-12 22:02:59 -03:00
|
|
|
SRC="up.png"></A>
|
2022-04-12 23:32:40 -03:00
|
|
|
<A ID="tex2html2859"
|
2022-04-12 21:54:18 -03:00
|
|
|
HREF="node153.html">
|
|
|
|
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
|
2022-04-12 22:02:59 -03:00
|
|
|
SRC="prev.png"></A>
|
2022-04-12 23:32:40 -03:00
|
|
|
<A ID="tex2html2865"
|
2022-04-12 21:54:18 -03:00
|
|
|
HREF="node4.html">
|
|
|
|
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
|
2022-04-12 22:02:59 -03:00
|
|
|
SRC="contents.png"></A>
|
2022-04-12 23:32:40 -03:00
|
|
|
<A ID="tex2html2867"
|
2022-04-12 21:54:18 -03:00
|
|
|
HREF="node201.html">
|
|
|
|
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
|
2022-04-12 22:02:59 -03:00
|
|
|
SRC="index.png"></A>
|
2022-04-12 21:54:18 -03:00
|
|
|
<BR>
|
2022-04-12 23:32:40 -03:00
|
|
|
<B> Next:</B> <A ID="tex2html2870"
|
2022-04-12 21:54:18 -03:00
|
|
|
HREF="node155.html">Examples</A>
|
2022-04-12 23:32:40 -03:00
|
|
|
<B> Up:</B> <A ID="tex2html2864"
|
2022-04-12 21:54:18 -03:00
|
|
|
HREF="node151.html">Applications</A>
|
2022-04-12 23:32:40 -03:00
|
|
|
<B> Previous:</B> <A ID="tex2html2860"
|
2022-04-12 21:54:18 -03:00
|
|
|
HREF="node153.html">Envelope following</A>
|
2022-04-12 23:32:40 -03:00
|
|
|
<B> <A ID="tex2html2866"
|
2022-04-12 21:54:18 -03:00
|
|
|
HREF="node4.html">Contents</A></B>
|
2022-04-12 23:32:40 -03:00
|
|
|
<B> <A ID="tex2html2868"
|
2022-04-12 21:54:18 -03:00
|
|
|
HREF="node201.html">Index</A></B>
|
|
|
|
<BR>
|
|
|
|
<BR>
|
|
|
|
<!--End of Navigation Panel-->
|
|
|
|
|
2022-04-12 23:32:40 -03:00
|
|
|
<H2><A ID="SECTION001243000000000000000"></A>
|
|
|
|
<A ID="sect8.singlesideband"></A>
|
2022-04-12 21:54:18 -03:00
|
|
|
<BR>
|
|
|
|
Single Sideband Modulation
|
|
|
|
</H2>
|
|
|
|
|
|
|
|
<P>
|
|
|
|
As we saw in Chapter 5, multiplying two real sinusoids together results
|
|
|
|
in a signal with two new components at the sum and difference of the
|
|
|
|
original frequencies. If we carry out the same operation with complex
|
|
|
|
sinusoids, we get only one new resultant frequency; this is one result of
|
|
|
|
the greater mathematical simplicity of complex sinusoids as compared to
|
|
|
|
real ones. If we multiply a complex sinusoid <!-- MATH
|
|
|
|
$1, Z, {Z^2}, \ldots$
|
|
|
|
-->
|
|
|
|
<IMG
|
|
|
|
WIDTH="81" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
|
|
|
|
SRC="img664.png"
|
|
|
|
ALT="$1, Z, {Z^2}, \ldots$">
|
|
|
|
with another one, <!-- MATH
|
|
|
|
$1, W, {W^2}, \ldots$
|
|
|
|
-->
|
|
|
|
<IMG
|
|
|
|
WIDTH="90" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
|
|
|
|
SRC="img998.png"
|
|
|
|
ALT="$1, W, {W^2}, \ldots$"> the result is
|
|
|
|
<!-- MATH
|
|
|
|
$1, WZ, {{(WZ)}^2}, \ldots$
|
|
|
|
-->
|
|
|
|
<IMG
|
|
|
|
WIDTH="128" HEIGHT="39" ALIGN="MIDDLE" BORDER="0"
|
|
|
|
SRC="img999.png"
|
|
|
|
ALT="$1, WZ, {{(WZ)}^2}, \ldots$">, which is another complex sinusoid whose
|
|
|
|
frequency, <IMG
|
|
|
|
WIDTH="55" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
|
|
|
SRC="img1000.png"
|
|
|
|
ALT="$\angle(ZW)$">, is the sum of the two original frequencies.
|
|
|
|
|
|
|
|
<P>
|
|
|
|
In general, since complex sinusoids have simpler properties than real ones, it
|
|
|
|
is often useful to be able to convert from real sinusoids to complex ones. In
|
|
|
|
other words, from the real sinusoid:
|
|
|
|
<BR><P></P>
|
|
|
|
<DIV ALIGN="CENTER">
|
|
|
|
<!-- MATH
|
|
|
|
\begin{displaymath}
|
|
|
|
x[n] = a \cdot \cos (\omega n)
|
|
|
|
\end{displaymath}
|
|
|
|
-->
|
|
|
|
|
|
|
|
<IMG
|
|
|
|
WIDTH="120" HEIGHT="28" BORDER="0"
|
|
|
|
SRC="img1001.png"
|
|
|
|
ALT="\begin{displaymath}
|
|
|
|
x[n] = a \cdot \cos (\omega n)
|
|
|
|
\end{displaymath}">
|
|
|
|
</DIV>
|
|
|
|
<BR CLEAR="ALL">
|
|
|
|
<P></P>
|
|
|
|
(with a spectral peak of amplitude <IMG
|
|
|
|
WIDTH="27" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
|
|
|
SRC="img409.png"
|
|
|
|
ALT="$a/2$"> and frequency <IMG
|
|
|
|
WIDTH="14" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
|
|
|
SRC="img27.png"
|
|
|
|
ALT="$\omega $">) we would like
|
|
|
|
a way of computing the complex sinusoid:
|
|
|
|
<BR><P></P>
|
|
|
|
<DIV ALIGN="CENTER">
|
|
|
|
<!-- MATH
|
|
|
|
\begin{displaymath}
|
|
|
|
X[n] = a \left ( \cos (\omega n) + i \sin (\omega n) \right )
|
|
|
|
\end{displaymath}
|
|
|
|
-->
|
|
|
|
|
|
|
|
<IMG
|
|
|
|
WIDTH="210" HEIGHT="28" BORDER="0"
|
|
|
|
SRC="img1002.png"
|
|
|
|
ALT="\begin{displaymath}
|
|
|
|
X[n] = a \left ( \cos (\omega n) + i \sin (\omega n) \right )
|
|
|
|
\end{displaymath}">
|
|
|
|
</DIV>
|
|
|
|
<BR CLEAR="ALL">
|
|
|
|
<P></P>
|
|
|
|
so that
|
|
|
|
<BR><P></P>
|
|
|
|
<DIV ALIGN="CENTER">
|
|
|
|
<!-- MATH
|
|
|
|
\begin{displaymath}
|
|
|
|
x[n] = \mathrm{re} (X[n])
|
|
|
|
\end{displaymath}
|
|
|
|
-->
|
|
|
|
|
|
|
|
<IMG
|
|
|
|
WIDTH="105" HEIGHT="28" BORDER="0"
|
|
|
|
SRC="img1003.png"
|
|
|
|
ALT="\begin{displaymath}
|
|
|
|
x[n] = \mathrm{re} (X[n])
|
|
|
|
\end{displaymath}">
|
|
|
|
</DIV>
|
|
|
|
<BR CLEAR="ALL">
|
|
|
|
<P></P>
|
|
|
|
We would like a linear process for doing this, so that superpositions of
|
|
|
|
sinusoids get treated as if their components were dealt with separately.
|
|
|
|
|
|
|
|
<P>
|
|
|
|
Of course we could equally well have chosen the complex sinusoid with
|
|
|
|
frequency <IMG
|
|
|
|
WIDTH="26" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
|
|
|
SRC="img1004.png"
|
|
|
|
ALT="$-\omega$">:
|
|
|
|
<BR><P></P>
|
|
|
|
<DIV ALIGN="CENTER">
|
|
|
|
<!-- MATH
|
|
|
|
\begin{displaymath}
|
|
|
|
X'[n] = a \left ( \cos (\omega n) - i \sin (\omega n) \right )
|
|
|
|
\end{displaymath}
|
|
|
|
-->
|
|
|
|
|
|
|
|
<IMG
|
|
|
|
WIDTH="214" HEIGHT="28" BORDER="0"
|
|
|
|
SRC="img1005.png"
|
|
|
|
ALT="\begin{displaymath}
|
|
|
|
X'[n] = a \left ( \cos (\omega n) - i \sin (\omega n) \right )
|
|
|
|
\end{displaymath}">
|
|
|
|
</DIV>
|
|
|
|
<BR CLEAR="ALL">
|
|
|
|
<P></P>
|
|
|
|
and in fact <IMG
|
|
|
|
WIDTH="31" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
|
|
|
SRC="img80.png"
|
|
|
|
ALT="$x[n]$"> is just half the sum of the two. In essence we need a filter
|
|
|
|
that will pass through positive frequencies (actually frequencies between
|
|
|
|
0 and <IMG
|
|
|
|
WIDTH="13" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
|
|
|
SRC="img41.png"
|
|
|
|
ALT="$\pi $">, corresponding to values of <IMG
|
|
|
|
WIDTH="15" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
|
|
|
|
SRC="img20.png"
|
|
|
|
ALT="$Z$"> on the top half of the complex
|
|
|
|
unit circle) from negative values
|
|
|
|
(from <IMG
|
|
|
|
WIDTH="25" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
|
|
|
SRC="img576.png"
|
|
|
|
ALT="$-\pi$"> to 0, or equivalently, from <IMG
|
|
|
|
WIDTH="13" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
|
|
|
SRC="img41.png"
|
|
|
|
ALT="$\pi $"> to <IMG
|
|
|
|
WIDTH="21" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
|
|
|
SRC="img16.png"
|
|
|
|
ALT="$2\pi $">--the bottom
|
|
|
|
half of the unit circle).
|
|
|
|
|
|
|
|
<P>
|
|
|
|
One can design such a filter by designing a low-pass filter with cutoff
|
|
|
|
frequency <IMG
|
|
|
|
WIDTH="29" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
|
|
|
SRC="img5.png"
|
|
|
|
ALT="$\pi /2$">, and then performing a rotation by <IMG
|
|
|
|
WIDTH="29" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
|
|
|
SRC="img5.png"
|
|
|
|
ALT="$\pi /2$"> radians using the
|
|
|
|
technique of Section <A HREF="node143.html#sect8.twopolebandpass">8.3.4</A>. However, it turns out to be
|
|
|
|
easier to do it using two specially designed networks of all-pass filters
|
|
|
|
with real coefficients.
|
|
|
|
|
|
|
|
<P>
|
|
|
|
Calling the transfer functions of the two filters <IMG
|
|
|
|
WIDTH="23" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
|
|
|
|
SRC="img1006.png"
|
|
|
|
ALT="$H_1$"> and <IMG
|
|
|
|
WIDTH="23" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
|
|
|
|
SRC="img1007.png"
|
|
|
|
ALT="$H_2$">, we design
|
|
|
|
the filters so that
|
|
|
|
<BR><P></P>
|
|
|
|
<DIV ALIGN="CENTER">
|
|
|
|
<!-- MATH
|
|
|
|
\begin{displaymath}
|
|
|
|
\angle({H_1}(Z)) - \angle({H_2}(Z)) \approx
|
|
|
|
\left \{
|
|
|
|
\begin{array}{ll}
|
|
|
|
\pi/2 & {0 < \angle(Z) < \pi} \\
|
|
|
|
-\pi/2 & {-\pi < \angle(Z) < 0}
|
|
|
|
\end{array}
|
|
|
|
\right .
|
|
|
|
\end{displaymath}
|
|
|
|
-->
|
|
|
|
|
|
|
|
<IMG
|
|
|
|
WIDTH="353" HEIGHT="45" BORDER="0"
|
|
|
|
SRC="img1008.png"
|
|
|
|
ALT="\begin{displaymath}
|
|
|
|
\angle({H_1}(Z)) - \angle({H_2}(Z)) \approx
|
|
|
|
\left \{
|
|
|
|
\be...
|
|
|
|
...pi} \\
|
|
|
|
-\pi/2 & {-\pi < \angle(Z) < 0}
|
|
|
|
\end{array} \right .
|
|
|
|
\end{displaymath}">
|
|
|
|
</DIV>
|
|
|
|
<BR CLEAR="ALL">
|
|
|
|
<P></P>
|
|
|
|
or in other words,
|
|
|
|
<BR><P></P>
|
|
|
|
<DIV ALIGN="CENTER">
|
|
|
|
<!-- MATH
|
|
|
|
\begin{displaymath}
|
|
|
|
{H_1}(Z) \approx i {H_2}(Z) , \; 0 < \angle(Z) < \pi
|
|
|
|
\end{displaymath}
|
|
|
|
-->
|
|
|
|
|
|
|
|
<IMG
|
|
|
|
WIDTH="221" HEIGHT="28" BORDER="0"
|
|
|
|
SRC="img1009.png"
|
|
|
|
ALT="\begin{displaymath}
|
|
|
|
{H_1}(Z) \approx i {H_2}(Z) , \; 0 < \angle(Z) < \pi
|
|
|
|
\end{displaymath}">
|
|
|
|
</DIV>
|
|
|
|
<BR CLEAR="ALL">
|
|
|
|
<P></P>
|
|
|
|
<BR><P></P>
|
|
|
|
<DIV ALIGN="CENTER">
|
|
|
|
<!-- MATH
|
|
|
|
\begin{displaymath}
|
|
|
|
{H_1}(Z) \approx -i {H_2}(Z) , \; -\pi < \angle(Z) < 0
|
|
|
|
\end{displaymath}
|
|
|
|
-->
|
|
|
|
|
|
|
|
<IMG
|
|
|
|
WIDTH="246" HEIGHT="28" BORDER="0"
|
|
|
|
SRC="img1010.png"
|
|
|
|
ALT="\begin{displaymath}
|
|
|
|
{H_1}(Z) \approx -i {H_2}(Z) , \; -\pi < \angle(Z) < 0
|
|
|
|
\end{displaymath}">
|
|
|
|
</DIV>
|
|
|
|
<BR CLEAR="ALL">
|
|
|
|
<P></P>
|
|
|
|
Then for any incoming real-valued signal <IMG
|
|
|
|
WIDTH="31" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
|
|
|
SRC="img80.png"
|
|
|
|
ALT="$x[n]$"> we simply form a complex number
|
|
|
|
<IMG
|
|
|
|
WIDTH="80" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
|
|
|
SRC="img1011.png"
|
|
|
|
ALT="$a[n] + i b[n]$"> where <IMG
|
|
|
|
WIDTH="30" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
|
|
|
SRC="img503.png"
|
|
|
|
ALT="$a[n]$"> is the output of the first filter and <IMG
|
|
|
|
WIDTH="28" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
|
|
|
SRC="img1012.png"
|
|
|
|
ALT="$b[n]$"> is
|
|
|
|
the output of the second. Any complex sinusoidal component of <IMG
|
|
|
|
WIDTH="31" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
|
|
|
SRC="img80.png"
|
|
|
|
ALT="$x[n]$">
|
|
|
|
(call it <IMG
|
|
|
|
WIDTH="24" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
|
|
|
|
SRC="img653.png"
|
|
|
|
ALT="$Z^n$">) will be transformed to
|
|
|
|
<BR><P></P>
|
|
|
|
<DIV ALIGN="CENTER">
|
|
|
|
<!-- MATH
|
|
|
|
\begin{displaymath}
|
|
|
|
{H_1}(Z) + i {H_2}(Z) \approx
|
|
|
|
\left \{
|
|
|
|
\begin{array}{ll}
|
|
|
|
2 {H_1}(Z) & {0 < \angle(Z) < \pi} \\
|
|
|
|
0 & \mbox{otherwise}
|
|
|
|
\end{array}
|
|
|
|
\right .
|
|
|
|
\end{displaymath}
|
|
|
|
-->
|
|
|
|
|
|
|
|
<IMG
|
|
|
|
WIDTH="318" HEIGHT="45" BORDER="0"
|
|
|
|
SRC="img1013.png"
|
|
|
|
ALT="\begin{displaymath}
|
|
|
|
{H_1}(Z) + i {H_2}(Z) \approx
|
|
|
|
\left \{
|
|
|
|
\begin{array}{ll}
|
|
|
|
...
|
|
|
|
...ngle(Z) < \pi} \\
|
|
|
|
0 & \mbox{otherwise}
|
|
|
|
\end{array} \right .
|
|
|
|
\end{displaymath}">
|
|
|
|
</DIV>
|
|
|
|
<BR CLEAR="ALL">
|
|
|
|
<P></P>
|
|
|
|
|
|
|
|
<P>
|
|
|
|
Having started with a real-valued signal, whose energy is split equally into
|
|
|
|
positive and negative frequencies, we end up with a complex-valued one with
|
|
|
|
only positive frequencies.
|
|
|
|
|
|
|
|
<P>
|
|
|
|
<HR>
|
|
|
|
<!--Navigation Panel-->
|
2022-04-12 23:32:40 -03:00
|
|
|
<A ID="tex2html2869"
|
2022-04-12 21:54:18 -03:00
|
|
|
HREF="node155.html">
|
|
|
|
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
|
2022-04-12 22:02:59 -03:00
|
|
|
SRC="next.png"></A>
|
2022-04-12 23:32:40 -03:00
|
|
|
<A ID="tex2html2863"
|
2022-04-12 21:54:18 -03:00
|
|
|
HREF="node151.html">
|
|
|
|
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
|
2022-04-12 22:02:59 -03:00
|
|
|
SRC="up.png"></A>
|
2022-04-12 23:32:40 -03:00
|
|
|
<A ID="tex2html2859"
|
2022-04-12 21:54:18 -03:00
|
|
|
HREF="node153.html">
|
|
|
|
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
|
2022-04-12 22:02:59 -03:00
|
|
|
SRC="prev.png"></A>
|
2022-04-12 23:32:40 -03:00
|
|
|
<A ID="tex2html2865"
|
2022-04-12 21:54:18 -03:00
|
|
|
HREF="node4.html">
|
|
|
|
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
|
2022-04-12 22:02:59 -03:00
|
|
|
SRC="contents.png"></A>
|
2022-04-12 23:32:40 -03:00
|
|
|
<A ID="tex2html2867"
|
2022-04-12 21:54:18 -03:00
|
|
|
HREF="node201.html">
|
|
|
|
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
|
2022-04-12 22:02:59 -03:00
|
|
|
SRC="index.png"></A>
|
2022-04-12 21:54:18 -03:00
|
|
|
<BR>
|
2022-04-12 23:32:40 -03:00
|
|
|
<B> Next:</B> <A ID="tex2html2870"
|
2022-04-12 21:54:18 -03:00
|
|
|
HREF="node155.html">Examples</A>
|
2022-04-12 23:32:40 -03:00
|
|
|
<B> Up:</B> <A ID="tex2html2864"
|
2022-04-12 21:54:18 -03:00
|
|
|
HREF="node151.html">Applications</A>
|
2022-04-12 23:32:40 -03:00
|
|
|
<B> Previous:</B> <A ID="tex2html2860"
|
2022-04-12 21:54:18 -03:00
|
|
|
HREF="node153.html">Envelope following</A>
|
2022-04-12 23:32:40 -03:00
|
|
|
<B> <A ID="tex2html2866"
|
2022-04-12 21:54:18 -03:00
|
|
|
HREF="node4.html">Contents</A></B>
|
2022-04-12 23:32:40 -03:00
|
|
|
<B> <A ID="tex2html2868"
|
2022-04-12 21:54:18 -03:00
|
|
|
HREF="node201.html">Index</A></B>
|
|
|
|
<!--End of Navigation Panel-->
|
|
|
|
<ADDRESS>
|
|
|
|
Miller Puckette
|
|
|
|
2006-12-30
|
|
|
|
</ADDRESS>
|
|
|
|
</BODY>
|
|
|
|
</HTML>
|