miller-book/node14.html

304 lines
9.5 KiB
HTML
Raw Normal View History

<!DOCTYPE html>
<!--Converted with LaTeX2HTML 2002-2-1 (1.71)
original version by: Nikos Drakos, CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<TITLE>Periodic Signals</TITLE>
<META NAME="description" CONTENT="Periodic Signals">
<META NAME="keywords" CONTENT="book">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META NAME="Generator" CONTENT="LaTeX2HTML v2002-2-1">
<META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">
<LINK REL="STYLESHEET" HREF="book.css">
<LINK REL="next" HREF="node15.html">
<LINK REL="previous" HREF="node13.html">
<LINK REL="up" HREF="node7.html">
<LINK REL="next" HREF="node15.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html749"
HREF="node15.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next.png"></A>
<A NAME="tex2html743"
HREF="node7.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up.png"></A>
<A NAME="tex2html737"
HREF="node13.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="prev.png"></A>
<A NAME="tex2html745"
HREF="node4.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents.png"></A>
<A NAME="tex2html747"
HREF="node201.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html750"
HREF="node15.html">About the Software Examples</A>
<B> Up:</B> <A NAME="tex2html744"
HREF="node7.html">Sinusoids, amplitude and frequency</A>
<B> Previous:</B> <A NAME="tex2html738"
HREF="node13.html">Superposing Signals</A>
&nbsp; <B> <A NAME="tex2html746"
HREF="node4.html">Contents</A></B>
&nbsp; <B> <A NAME="tex2html748"
HREF="node201.html">Index</A></B>
<BR>
<BR>
<!--End of Navigation Panel-->
<H1><A NAME="SECTION00570000000000000000"></A>
<A NAME="sect1.fourier"></A>
<BR>
Periodic Signals
</H1>
A signal <IMG
WIDTH="31" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img80.png"
ALT="$x[n]$"> is said to repeat at a period <IMG
WIDTH="12" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
SRC="img135.png"
ALT="$\tau$"> if
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
x[n + \tau] = x[n]
\end{displaymath}
-->
<IMG
WIDTH="102" HEIGHT="28" BORDER="0"
SRC="img136.png"
ALT="\begin{displaymath}
x[n + \tau] = x[n]
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
for all <IMG
WIDTH="13" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
SRC="img75.png"
ALT="$n$">. Such a signal would also repeat at periods <IMG
WIDTH="20" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
SRC="img137.png"
ALT="$2 \tau$"> and so on;
the smallest <IMG
WIDTH="12" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
SRC="img135.png"
ALT="$\tau$"> if any at which a signal repeats is called the signal's
<A NAME="1175"></A><I>period</I>.
In discussing periods of digital audio signals, we quickly run into the
difficulty of describing signals whose ``period" isn't an integer, so that the
equation above doesn't make sense. For now we'll effectively
ignore this difficulty by supposing that the signal <IMG
WIDTH="31" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img80.png"
ALT="$x[n]$"> may somehow be
interpolated between the samples so that it's well defined whether <IMG
WIDTH="13" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
SRC="img75.png"
ALT="$n$"> is an
integer or not.
<P>
A sinusoid has a period (in samples) of <!-- MATH
$2 \pi / \omega$
-->
<IMG
WIDTH="39" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img138.png"
ALT="$2 \pi / \omega$"> where
<IMG
WIDTH="14" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
SRC="img27.png"
ALT="$\omega $"> is the angular frequency. More generally, any sum of sinusoids
with frequencies <!-- MATH
$2 \pi k/ \omega$
-->
<IMG
WIDTH="48" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img139.png"
ALT="$2 \pi k/ \omega$">, for integers <IMG
WIDTH="12" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
SRC="img58.png"
ALT="$k$">, will repeat after
<!-- MATH
$2 \pi / \omega$
-->
<IMG
WIDTH="39" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img138.png"
ALT="$2 \pi / \omega$"> samples.
Such a sum is called a <I>Fourier Series</I>:
<A NAME="eq-fourierseries"></A>
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
x[n] = {a_0} +
{a_1} \cos \left ( \omega n + {\phi_1} \right ) +
{a_2} \cos \left ( 2 \omega n + {\phi_2} \right ) + \cdots +
{a_p} \cos \left ( p \omega n + {\phi_p} \right )
\end{displaymath}
-->
<IMG
WIDTH="507" HEIGHT="29" BORDER="0"
SRC="img140.png"
ALT="\begin{displaymath}
x[n] = {a_0} +
{a_1} \cos \left ( \omega n + {\phi_1} \rig...
... + \cdots +
{a_p} \cos \left ( p \omega n + {\phi_p} \right )
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
Moreover, if we make certain technical assumptions (in effect that signals
only contain frequencies up to a finite bound), we can represent any periodic
signal as such a sum. This is the discrete-time variant of Fourier analysis
which will reappear in Chapter <A HREF="node163.html#chapter-fourier">9</A>.
<P>
The angular frequencies of the sinusoids above are all integer
multiples of <IMG
WIDTH="14" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
SRC="img27.png"
ALT="$\omega $">. They are called the
<A NAME="1187"></A><I>harmonics</I>
of <IMG
WIDTH="14" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
SRC="img27.png"
ALT="$\omega $">, which in turn is called the
<A NAME="1189"></A><I>fundamental</I>. In terms of pitch, the harmonics
<!-- MATH
$\omega, 2 \omega, \ldots$
-->
<IMG
WIDTH="65" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
SRC="img141.png"
ALT="$\omega, 2 \omega, \ldots$"> are at intervals of 0, 1200, 1902, 2400, 2786,
3102, 3369, 3600, ..., cents above the fundamental; this sequence of pitches
is sometimes called the <I>harmonic series</I>. The first six of these are
all quite close to multiples of 100; in other words, the first six harmonics
of a pitch in the Western scale land close to (but not always exactly on) other
pitches of the same scale; the third and sixth miss only by 2 cents and the
fifth misses by 14.
<P>
<A NAME="r-intervals"></A>Put another way, the frequency ratio 3:2 (a perfect fifth in Western
terminology) is almost exactly
seven half-steps, 4:3 (a perfect fourth) is just as near to five half-steps,
and the ratios 5:4 and 6:5 (perfect major and minor thirds) are fairly close to
intervals of four and three half-steps, respectively.
<P>
A Fourier series (with only three terms) is shown in Figure <A HREF="#fig01.08">1.8</A>.
The first three graphs are of sinusoids, whose frequencies are in a 1:2:3
ratio. The common period is marked on the horizontal axis. Each sinusoid
has a different amplitude and initial phase. The sum of the three, at
bottom, is not a sinusoid, but it still maintains the periodicity shared
by the three component sinusoids.
<P>
<DIV ALIGN="CENTER"><A NAME="fig01.08"></A><A NAME="1196"></A>
<TABLE>
<CAPTION ALIGN="BOTTOM"><STRONG>Figure 1.8:</STRONG>
A Fourier series, showing three sinusoids and their sum. The
three component sinusoids have frequencies in the ratio 1:2:3.</CAPTION>
<TR><TD><IMG
WIDTH="438" HEIGHT="373" BORDER="0"
SRC="img142.png"
ALT="\begin{figure}\psfig{file=figs/fig01.08.ps}\end{figure}"></TD></TR>
</TABLE>
</DIV>
<P>
Leaving questions of phase aside, we can use a bank of sinusoidal oscillators
to synthesize periodic tones, or even to morph smoothly through a succession
of periodic tones, by specifying the fundamental frequency and the (possibly
time-varying) amplitudes of the partials. Figure <A HREF="#fig01.09">1.9</A> shows a
block diagram for doing this.
<P>
<DIV ALIGN="CENTER"><A NAME="fig01.09"></A><A NAME="1202"></A>
<TABLE>
<CAPTION ALIGN="BOTTOM"><STRONG>Figure 1.9:</STRONG>
Using many oscillators to synthesize a waveform with desired harmonic
amplitudes.</CAPTION>
<TR><TD><IMG
WIDTH="482" HEIGHT="391" BORDER="0"
SRC="img143.png"
ALT="\begin{figure}\psfig{file=figs/fig01.09.ps}\end{figure}"></TD></TR>
</TABLE>
</DIV>
<P>
This is an example of
<A NAME="1205"></A><I>additive synthesis</I>; more generally the term can be applied to networks
in which the frequencies of the oscillators are independently controllable.
The early days of computer music rang with the sound of additive synthesis.
<P>
<HR>
<!--Navigation Panel-->
<A NAME="tex2html749"
HREF="node15.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next.png"></A>
<A NAME="tex2html743"
HREF="node7.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up.png"></A>
<A NAME="tex2html737"
HREF="node13.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="prev.png"></A>
<A NAME="tex2html745"
HREF="node4.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents.png"></A>
<A NAME="tex2html747"
HREF="node201.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html750"
HREF="node15.html">About the Software Examples</A>
<B> Up:</B> <A NAME="tex2html744"
HREF="node7.html">Sinusoids, amplitude and frequency</A>
<B> Previous:</B> <A NAME="tex2html738"
HREF="node13.html">Superposing Signals</A>
&nbsp; <B> <A NAME="tex2html746"
HREF="node4.html">Contents</A></B>
&nbsp; <B> <A NAME="tex2html748"
HREF="node201.html">Index</A></B>
<!--End of Navigation Panel-->
<ADDRESS>
Miller Puckette
2006-12-30
</ADDRESS>
</BODY>
</HTML>