300 lines
9.9 KiB
HTML
300 lines
9.9 KiB
HTML
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
|
||
|
|
||
|
<!--Converted with LaTeX2HTML 2002-2-1 (1.71)
|
||
|
original version by: Nikos Drakos, CBLU, University of Leeds
|
||
|
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
|
||
|
* with significant contributions from:
|
||
|
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
|
||
|
<HTML>
|
||
|
<HEAD>
|
||
|
<TITLE>Periodic Signals</TITLE>
|
||
|
<META NAME="description" CONTENT="Periodic Signals">
|
||
|
<META NAME="keywords" CONTENT="book">
|
||
|
<META NAME="resource-type" CONTENT="document">
|
||
|
<META NAME="distribution" CONTENT="global">
|
||
|
|
||
|
<META NAME="Generator" CONTENT="LaTeX2HTML v2002-2-1">
|
||
|
<META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">
|
||
|
|
||
|
<LINK REL="STYLESHEET" HREF="book.css">
|
||
|
|
||
|
<LINK REL="next" HREF="node15.html">
|
||
|
<LINK REL="previous" HREF="node13.html">
|
||
|
<LINK REL="up" HREF="node7.html">
|
||
|
<LINK REL="next" HREF="node15.html">
|
||
|
</HEAD>
|
||
|
|
||
|
<BODY >
|
||
|
<!--Navigation Panel-->
|
||
|
<A NAME="tex2html749"
|
||
|
HREF="node15.html">
|
||
|
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
|
||
|
SRC="file:/usr/local/share/lib/latex2html/icons/next.png"></A>
|
||
|
<A NAME="tex2html743"
|
||
|
HREF="node7.html">
|
||
|
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
|
||
|
SRC="file:/usr/local/share/lib/latex2html/icons/up.png"></A>
|
||
|
<A NAME="tex2html737"
|
||
|
HREF="node13.html">
|
||
|
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
|
||
|
SRC="file:/usr/local/share/lib/latex2html/icons/prev.png"></A>
|
||
|
<A NAME="tex2html745"
|
||
|
HREF="node4.html">
|
||
|
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
|
||
|
SRC="file:/usr/local/share/lib/latex2html/icons/contents.png"></A>
|
||
|
<A NAME="tex2html747"
|
||
|
HREF="node201.html">
|
||
|
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
|
||
|
SRC="file:/usr/local/share/lib/latex2html/icons/index.png"></A>
|
||
|
<BR>
|
||
|
<B> Next:</B> <A NAME="tex2html750"
|
||
|
HREF="node15.html">About the Software Examples</A>
|
||
|
<B> Up:</B> <A NAME="tex2html744"
|
||
|
HREF="node7.html">Sinusoids, amplitude and frequency</A>
|
||
|
<B> Previous:</B> <A NAME="tex2html738"
|
||
|
HREF="node13.html">Superposing Signals</A>
|
||
|
<B> <A NAME="tex2html746"
|
||
|
HREF="node4.html">Contents</A></B>
|
||
|
<B> <A NAME="tex2html748"
|
||
|
HREF="node201.html">Index</A></B>
|
||
|
<BR>
|
||
|
<BR>
|
||
|
<!--End of Navigation Panel-->
|
||
|
|
||
|
<H1><A NAME="SECTION00570000000000000000"></A>
|
||
|
<A NAME="sect1.fourier"></A>
|
||
|
<BR>
|
||
|
Periodic Signals
|
||
|
</H1>
|
||
|
A signal <IMG
|
||
|
WIDTH="31" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
||
|
SRC="img80.png"
|
||
|
ALT="$x[n]$"> is said to repeat at a period <IMG
|
||
|
WIDTH="12" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||
|
SRC="img135.png"
|
||
|
ALT="$\tau$"> if
|
||
|
<BR><P></P>
|
||
|
<DIV ALIGN="CENTER">
|
||
|
<!-- MATH
|
||
|
\begin{displaymath}
|
||
|
x[n + \tau] = x[n]
|
||
|
\end{displaymath}
|
||
|
-->
|
||
|
|
||
|
<IMG
|
||
|
WIDTH="102" HEIGHT="28" BORDER="0"
|
||
|
SRC="img136.png"
|
||
|
ALT="\begin{displaymath}
|
||
|
x[n + \tau] = x[n]
|
||
|
\end{displaymath}">
|
||
|
</DIV>
|
||
|
<BR CLEAR="ALL">
|
||
|
<P></P>
|
||
|
for all <IMG
|
||
|
WIDTH="13" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||
|
SRC="img75.png"
|
||
|
ALT="$n$">. Such a signal would also repeat at periods <IMG
|
||
|
WIDTH="20" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||
|
SRC="img137.png"
|
||
|
ALT="$2 \tau$"> and so on;
|
||
|
the smallest <IMG
|
||
|
WIDTH="12" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||
|
SRC="img135.png"
|
||
|
ALT="$\tau$"> if any at which a signal repeats is called the signal's
|
||
|
<A NAME="1175"></A><I>period</I>.
|
||
|
In discussing periods of digital audio signals, we quickly run into the
|
||
|
difficulty of describing signals whose ``period" isn't an integer, so that the
|
||
|
equation above doesn't make sense. For now we'll effectively
|
||
|
ignore this difficulty by supposing that the signal <IMG
|
||
|
WIDTH="31" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
||
|
SRC="img80.png"
|
||
|
ALT="$x[n]$"> may somehow be
|
||
|
interpolated between the samples so that it's well defined whether <IMG
|
||
|
WIDTH="13" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||
|
SRC="img75.png"
|
||
|
ALT="$n$"> is an
|
||
|
integer or not.
|
||
|
|
||
|
<P>
|
||
|
A sinusoid has a period (in samples) of <!-- MATH
|
||
|
$2 \pi / \omega$
|
||
|
-->
|
||
|
<IMG
|
||
|
WIDTH="39" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
||
|
SRC="img138.png"
|
||
|
ALT="$2 \pi / \omega$"> where
|
||
|
<IMG
|
||
|
WIDTH="14" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||
|
SRC="img27.png"
|
||
|
ALT="$\omega $"> is the angular frequency. More generally, any sum of sinusoids
|
||
|
with frequencies <!-- MATH
|
||
|
$2 \pi k/ \omega$
|
||
|
-->
|
||
|
<IMG
|
||
|
WIDTH="48" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
||
|
SRC="img139.png"
|
||
|
ALT="$2 \pi k/ \omega$">, for integers <IMG
|
||
|
WIDTH="12" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
|
||
|
SRC="img58.png"
|
||
|
ALT="$k$">, will repeat after
|
||
|
<!-- MATH
|
||
|
$2 \pi / \omega$
|
||
|
-->
|
||
|
<IMG
|
||
|
WIDTH="39" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
||
|
SRC="img138.png"
|
||
|
ALT="$2 \pi / \omega$"> samples.
|
||
|
Such a sum is called a <I>Fourier Series</I>:
|
||
|
<A NAME="eq-fourierseries"></A>
|
||
|
<BR><P></P>
|
||
|
<DIV ALIGN="CENTER">
|
||
|
<!-- MATH
|
||
|
\begin{displaymath}
|
||
|
x[n] = {a_0} +
|
||
|
{a_1} \cos \left ( \omega n + {\phi_1} \right ) +
|
||
|
{a_2} \cos \left ( 2 \omega n + {\phi_2} \right ) + \cdots +
|
||
|
{a_p} \cos \left ( p \omega n + {\phi_p} \right )
|
||
|
\end{displaymath}
|
||
|
-->
|
||
|
|
||
|
<IMG
|
||
|
WIDTH="507" HEIGHT="29" BORDER="0"
|
||
|
SRC="img140.png"
|
||
|
ALT="\begin{displaymath}
|
||
|
x[n] = {a_0} +
|
||
|
{a_1} \cos \left ( \omega n + {\phi_1} \rig...
|
||
|
... + \cdots +
|
||
|
{a_p} \cos \left ( p \omega n + {\phi_p} \right )
|
||
|
\end{displaymath}">
|
||
|
</DIV>
|
||
|
<BR CLEAR="ALL">
|
||
|
<P></P>
|
||
|
Moreover, if we make certain technical assumptions (in effect that signals
|
||
|
only contain frequencies up to a finite bound), we can represent any periodic
|
||
|
signal as such a sum. This is the discrete-time variant of Fourier analysis
|
||
|
which will reappear in Chapter <A HREF="node163.html#chapter-fourier">9</A>.
|
||
|
|
||
|
<P>
|
||
|
The angular frequencies of the sinusoids above are all integer
|
||
|
multiples of <IMG
|
||
|
WIDTH="14" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||
|
SRC="img27.png"
|
||
|
ALT="$\omega $">. They are called the
|
||
|
<A NAME="1187"></A><I>harmonics</I>
|
||
|
of <IMG
|
||
|
WIDTH="14" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||
|
SRC="img27.png"
|
||
|
ALT="$\omega $">, which in turn is called the
|
||
|
<A NAME="1189"></A><I>fundamental</I>. In terms of pitch, the harmonics
|
||
|
<!-- MATH
|
||
|
$\omega, 2 \omega, \ldots$
|
||
|
-->
|
||
|
<IMG
|
||
|
WIDTH="65" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
||
|
SRC="img141.png"
|
||
|
ALT="$\omega, 2 \omega, \ldots$"> are at intervals of 0, 1200, 1902, 2400, 2786,
|
||
|
3102, 3369, 3600, ..., cents above the fundamental; this sequence of pitches
|
||
|
is sometimes called the <I>harmonic series</I>. The first six of these are
|
||
|
all quite close to multiples of 100; in other words, the first six harmonics
|
||
|
of a pitch in the Western scale land close to (but not always exactly on) other
|
||
|
pitches of the same scale; the third and sixth miss only by 2 cents and the
|
||
|
fifth misses by 14.
|
||
|
|
||
|
<P>
|
||
|
<A NAME="r-intervals"></A>Put another way, the frequency ratio 3:2 (a perfect fifth in Western
|
||
|
terminology) is almost exactly
|
||
|
seven half-steps, 4:3 (a perfect fourth) is just as near to five half-steps,
|
||
|
and the ratios 5:4 and 6:5 (perfect major and minor thirds) are fairly close to
|
||
|
intervals of four and three half-steps, respectively.
|
||
|
|
||
|
<P>
|
||
|
A Fourier series (with only three terms) is shown in Figure <A HREF="#fig01.08">1.8</A>.
|
||
|
The first three graphs are of sinusoids, whose frequencies are in a 1:2:3
|
||
|
ratio. The common period is marked on the horizontal axis. Each sinusoid
|
||
|
has a different amplitude and initial phase. The sum of the three, at
|
||
|
bottom, is not a sinusoid, but it still maintains the periodicity shared
|
||
|
by the three component sinusoids.
|
||
|
|
||
|
<P>
|
||
|
|
||
|
<DIV ALIGN="CENTER"><A NAME="fig01.08"></A><A NAME="1196"></A>
|
||
|
<TABLE>
|
||
|
<CAPTION ALIGN="BOTTOM"><STRONG>Figure 1.8:</STRONG>
|
||
|
A Fourier series, showing three sinusoids and their sum. The
|
||
|
three component sinusoids have frequencies in the ratio 1:2:3.</CAPTION>
|
||
|
<TR><TD><IMG
|
||
|
WIDTH="438" HEIGHT="373" BORDER="0"
|
||
|
SRC="img142.png"
|
||
|
ALT="\begin{figure}\psfig{file=figs/fig01.08.ps}\end{figure}"></TD></TR>
|
||
|
</TABLE>
|
||
|
</DIV>
|
||
|
|
||
|
<P>
|
||
|
Leaving questions of phase aside, we can use a bank of sinusoidal oscillators
|
||
|
to synthesize periodic tones, or even to morph smoothly through a succession
|
||
|
of periodic tones, by specifying the fundamental frequency and the (possibly
|
||
|
time-varying) amplitudes of the partials. Figure <A HREF="#fig01.09">1.9</A> shows a
|
||
|
block diagram for doing this.
|
||
|
|
||
|
<P>
|
||
|
|
||
|
<DIV ALIGN="CENTER"><A NAME="fig01.09"></A><A NAME="1202"></A>
|
||
|
<TABLE>
|
||
|
<CAPTION ALIGN="BOTTOM"><STRONG>Figure 1.9:</STRONG>
|
||
|
Using many oscillators to synthesize a waveform with desired harmonic
|
||
|
amplitudes.</CAPTION>
|
||
|
<TR><TD><IMG
|
||
|
WIDTH="482" HEIGHT="391" BORDER="0"
|
||
|
SRC="img143.png"
|
||
|
ALT="\begin{figure}\psfig{file=figs/fig01.09.ps}\end{figure}"></TD></TR>
|
||
|
</TABLE>
|
||
|
</DIV>
|
||
|
|
||
|
<P>
|
||
|
This is an example of
|
||
|
<A NAME="1205"></A><I>additive synthesis</I>; more generally the term can be applied to networks
|
||
|
in which the frequencies of the oscillators are independently controllable.
|
||
|
The early days of computer music rang with the sound of additive synthesis.
|
||
|
|
||
|
<P>
|
||
|
<HR>
|
||
|
<!--Navigation Panel-->
|
||
|
<A NAME="tex2html749"
|
||
|
HREF="node15.html">
|
||
|
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
|
||
|
SRC="file:/usr/local/share/lib/latex2html/icons/next.png"></A>
|
||
|
<A NAME="tex2html743"
|
||
|
HREF="node7.html">
|
||
|
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
|
||
|
SRC="file:/usr/local/share/lib/latex2html/icons/up.png"></A>
|
||
|
<A NAME="tex2html737"
|
||
|
HREF="node13.html">
|
||
|
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
|
||
|
SRC="file:/usr/local/share/lib/latex2html/icons/prev.png"></A>
|
||
|
<A NAME="tex2html745"
|
||
|
HREF="node4.html">
|
||
|
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
|
||
|
SRC="file:/usr/local/share/lib/latex2html/icons/contents.png"></A>
|
||
|
<A NAME="tex2html747"
|
||
|
HREF="node201.html">
|
||
|
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
|
||
|
SRC="file:/usr/local/share/lib/latex2html/icons/index.png"></A>
|
||
|
<BR>
|
||
|
<B> Next:</B> <A NAME="tex2html750"
|
||
|
HREF="node15.html">About the Software Examples</A>
|
||
|
<B> Up:</B> <A NAME="tex2html744"
|
||
|
HREF="node7.html">Sinusoids, amplitude and frequency</A>
|
||
|
<B> Previous:</B> <A NAME="tex2html738"
|
||
|
HREF="node13.html">Superposing Signals</A>
|
||
|
<B> <A NAME="tex2html746"
|
||
|
HREF="node4.html">Contents</A></B>
|
||
|
<B> <A NAME="tex2html748"
|
||
|
HREF="node201.html">Index</A></B>
|
||
|
<!--End of Navigation Panel-->
|
||
|
<ADDRESS>
|
||
|
Miller Puckette
|
||
|
2006-12-30
|
||
|
</ADDRESS>
|
||
|
</BODY>
|
||
|
</HTML>
|