miller-book/node89.html

235 lines
8.1 KiB
HTML
Raw Permalink Normal View History

<!DOCTYPE html>
<!--Converted with LaTeX2HTML 2002-2-1 (1.71)
original version by: Nikos Drakos, CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<TITLE>Designer spectra</TITLE>
<META NAME="description" CONTENT="Designer spectra">
<META NAME="keywords" CONTENT="book">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META NAME="Generator" CONTENT="LaTeX2HTML v2002-2-1">
<META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">
<LINK REL="STYLESHEET" HREF="book.css">
<LINK REL="next" HREF="node104.html">
<LINK REL="previous" HREF="node75.html">
<LINK REL="up" HREF="book.html">
<LINK REL="next" HREF="node90.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
2022-04-12 23:32:40 -03:00
<A ID="tex2html1868"
HREF="node90.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next.png"></A>
2022-04-12 23:32:40 -03:00
<A ID="tex2html1862"
HREF="book.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up.png"></A>
2022-04-12 23:32:40 -03:00
<A ID="tex2html1856"
HREF="node88.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="prev.png"></A>
2022-04-12 23:32:40 -03:00
<A ID="tex2html1864"
HREF="node4.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents.png"></A>
2022-04-12 23:32:40 -03:00
<A ID="tex2html1866"
HREF="node201.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index.png"></A>
<BR>
2022-04-12 23:32:40 -03:00
<B> Next:</B> <A ID="tex2html1869"
HREF="node90.html">Carrier/modulator model</A>
2022-04-12 23:32:40 -03:00
<B> Up:</B> <A ID="tex2html1863"
HREF="book.html">book</A>
2022-04-12 23:32:40 -03:00
<B> Previous:</B> <A ID="tex2html1857"
HREF="node88.html">Exercises</A>
2022-04-12 23:32:40 -03:00
&nbsp; <B> <A ID="tex2html1865"
HREF="node4.html">Contents</A></B>
2022-04-12 23:32:40 -03:00
&nbsp; <B> <A ID="tex2html1867"
HREF="node201.html">Index</A></B>
<BR>
<BR>
<!--End of Navigation Panel-->
2022-04-12 23:32:40 -03:00
<H1><A ID="SECTION001000000000000000000"></A>
<A ID="chapter-paf"></A>
<BR>
Designer spectra
</H1>
<P>
As suggested at the beginning of the previous chapter, a powerful way to
synthesize musical sounds is to specify--and then realize--specific
trajectories of pitch (or more generally, frequencies of partials), along
with trajectories of
spectral envelope [<A
HREF="node202.html#r-puckette01a">Puc01</A>].
The
spectral envelope is used to determine the amplitude of the individual
partials, as a function of their frequencies, and is thought of as controlling
the sound's (possibly time-varying) timbre.
<P>
A simple example of this would be to imitate a plucked
string by constructing a sound with harmonically spaced partials in which the spectral
envelope starts out rich but then dies away exponentially with higher
frequencies decaying faster than lower ones, so that the timbre mellows over
time. Spectral-evolution
models for various acoustic instruments have been proposed
[<A
HREF="node202.html#r-grey77">GM77</A>] [<A
HREF="node202.html#r-risset69">RM69</A>]
. A more complicated example is the
spoken or sung voice, in which vowels appear as spectral envelopes, dipthongs
and many consonants appear as time variations in the spectral envelopes, and
other consonants appear as spectrally shaped noise.
<P>
Spectral envelopes may be obtained from analysis of recorded sounds (developed
in Chapter <A HREF="node163.html#chapter-fourier">9</A>) or from purely synthetic criteria.
To specify a spectral envelope from scratch for every possible frequency
would be tedious, and in most cases you would want to describe them in
terms of their salient features. The most popular way of doing this is
to specify the size and shape of the spectral envelope's peaks, which are
called
2022-04-12 23:32:40 -03:00
<A ID="6795"></A><I>formants</I>. Figure <A HREF="#fig06.01">6.1</A> shows a spectral envelope with two
formants. Although the shapes of the two peaks in the spectral envelope
are different, they can both be roughly described by giving the coordinates
of each apex (which give the formant's
2022-04-12 23:32:40 -03:00
<A ID="6798"></A><I>center frequency</I>
and amplitude) and each formant's
2022-04-12 23:32:40 -03:00
<A ID="6800"></A><I>bandwidth</I>. A typical measure of bandwidth would be the width of the
peak at a level 3 decibels below its apex.
Note that if the peak is at (or near) the <IMG
WIDTH="42" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="img11.png"
ALT="$f=0$"> axis, we pretend it falls
off to the left at the same rate as (in reality) it falls off to the right.
<P>
2022-04-12 23:32:40 -03:00
<DIV ALIGN="CENTER"><A ID="fig06.01"></A><A ID="6804"></A>
<TABLE>
<CAPTION ALIGN="BOTTOM"><STRONG>Figure 6.1:</STRONG>
A spectral envelope showing the frequencies, amplitudes, and
bandwidths of two formants.</CAPTION>
<TR><TD><IMG
WIDTH="467" HEIGHT="261" BORDER="0"
SRC="img551.png"
ALT="\begin{figure}\psfig{file=figs/fig06.01.ps}\end{figure}"></TD></TR>
</TABLE>
</DIV>
<P>
Suppose we wish to generate a harmonic sound with a specified collection of
formants. Independently of the fundamental frequency desired, we wish the
spectrum to have peaks with prescribed center frequencies, amplitudes, and
bandwidths. Returning to the phase modulation spectra shown in Figure
<A HREF="node87.html#fig05.16">5.16</A>, we see that, at small indices of modulation at least, the
result has a single, well-defined spectral peak. We can imagine adding several
of these, all sharing a fundamental (modulating) frequency but with carriers
tuned to different harmonics to select the various desired center frequencies,
and with indices of modulation chosen to give the desired bandwidths. This was
first explored by Chowning [<A
HREF="node202.html#r-chowning89">Cho89</A>] who arranged formants generated
by phase modulation to synthesize singing voices.
In this chapter we'll establish a general framework for building
harmonic spectra with desired, possibly time-varying, formants.
<P>
<BR><HR>
<!--Table of Child-Links-->
2022-04-12 23:32:40 -03:00
<A ID="CHILD_LINKS"><STRONG>Subsections</STRONG></A>
<UL>
2022-04-12 23:32:40 -03:00
<LI><A ID="tex2html1870"
HREF="node90.html">Carrier/modulator model</A>
2022-04-12 23:32:40 -03:00
<LI><A ID="tex2html1871"
HREF="node91.html">Pulse trains</A>
<UL>
2022-04-12 23:32:40 -03:00
<LI><A ID="tex2html1872"
HREF="node92.html">Pulse trains via waveshaping</A>
2022-04-12 23:32:40 -03:00
<LI><A ID="tex2html1873"
HREF="node93.html">Pulse trains via wavetable stretching</A>
2022-04-12 23:32:40 -03:00
<LI><A ID="tex2html1874"
HREF="node94.html">Resulting spectra</A>
</UL>
<BR>
2022-04-12 23:32:40 -03:00
<LI><A ID="tex2html1875"
HREF="node95.html">Movable ring modulation</A>
2022-04-12 23:32:40 -03:00
<LI><A ID="tex2html1876"
HREF="node96.html">Phase-aligned formant (PAF) generator</A>
2022-04-12 23:32:40 -03:00
<LI><A ID="tex2html1877"
HREF="node97.html">Examples</A>
<UL>
2022-04-12 23:32:40 -03:00
<LI><A ID="tex2html1878"
HREF="node98.html">Wavetable pulse train</A>
2022-04-12 23:32:40 -03:00
<LI><A ID="tex2html1879"
HREF="node99.html">Simple formant generator</A>
2022-04-12 23:32:40 -03:00
<LI><A ID="tex2html1880"
HREF="node100.html">Two-cosine carrier signal</A>
2022-04-12 23:32:40 -03:00
<LI><A ID="tex2html1881"
HREF="node101.html">The PAF generator</A>
2022-04-12 23:32:40 -03:00
<LI><A ID="tex2html1882"
HREF="node102.html">Stretched wavetables</A>
</UL>
<BR>
2022-04-12 23:32:40 -03:00
<LI><A ID="tex2html1883"
HREF="node103.html">Exercises</A>
</UL>
<!--End of Table of Child-Links-->
<HR>
<!--Navigation Panel-->
2022-04-12 23:32:40 -03:00
<A ID="tex2html1868"
HREF="node90.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next.png"></A>
2022-04-12 23:32:40 -03:00
<A ID="tex2html1862"
HREF="book.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up.png"></A>
2022-04-12 23:32:40 -03:00
<A ID="tex2html1856"
HREF="node88.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="prev.png"></A>
2022-04-12 23:32:40 -03:00
<A ID="tex2html1864"
HREF="node4.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents.png"></A>
2022-04-12 23:32:40 -03:00
<A ID="tex2html1866"
HREF="node201.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index.png"></A>
<BR>
2022-04-12 23:32:40 -03:00
<B> Next:</B> <A ID="tex2html1869"
HREF="node90.html">Carrier/modulator model</A>
2022-04-12 23:32:40 -03:00
<B> Up:</B> <A ID="tex2html1863"
HREF="book.html">book</A>
2022-04-12 23:32:40 -03:00
<B> Previous:</B> <A ID="tex2html1857"
HREF="node88.html">Exercises</A>
2022-04-12 23:32:40 -03:00
&nbsp; <B> <A ID="tex2html1865"
HREF="node4.html">Contents</A></B>
2022-04-12 23:32:40 -03:00
&nbsp; <B> <A ID="tex2html1867"
HREF="node201.html">Index</A></B>
<!--End of Navigation Panel-->
<ADDRESS>
Miller Puckette
2006-12-30
</ADDRESS>
</BODY>
</HTML>