2022-04-12 22:02:59 -03:00
|
|
|
<!DOCTYPE html>
|
2022-04-12 21:54:18 -03:00
|
|
|
|
|
|
|
<!--Converted with LaTeX2HTML 2002-2-1 (1.71)
|
|
|
|
original version by: Nikos Drakos, CBLU, University of Leeds
|
|
|
|
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
|
|
|
|
* with significant contributions from:
|
|
|
|
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
|
|
|
|
<HTML>
|
|
|
|
<HEAD>
|
2022-04-12 22:02:59 -03:00
|
|
|
|
|
|
|
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
|
|
|
|
|
|
|
|
2022-04-12 21:54:18 -03:00
|
|
|
<TITLE>The sampling theorem</TITLE>
|
|
|
|
<META NAME="description" CONTENT="The sampling theorem">
|
|
|
|
<META NAME="keywords" CONTENT="book">
|
|
|
|
<META NAME="resource-type" CONTENT="document">
|
|
|
|
<META NAME="distribution" CONTENT="global">
|
|
|
|
|
|
|
|
<META NAME="Generator" CONTENT="LaTeX2HTML v2002-2-1">
|
|
|
|
<META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">
|
|
|
|
|
|
|
|
<LINK REL="STYLESHEET" HREF="book.css">
|
|
|
|
|
|
|
|
<LINK REL="next" HREF="node42.html">
|
|
|
|
<LINK REL="previous" HREF="node40.html">
|
|
|
|
<LINK REL="up" HREF="node40.html">
|
|
|
|
<LINK REL="next" HREF="node42.html">
|
|
|
|
</HEAD>
|
|
|
|
|
|
|
|
<BODY >
|
|
|
|
<!--Navigation Panel-->
|
2022-04-12 23:32:40 -03:00
|
|
|
<A ID="tex2html1161"
|
2022-04-12 21:54:18 -03:00
|
|
|
HREF="node42.html">
|
|
|
|
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
|
2022-04-12 22:02:59 -03:00
|
|
|
SRC="next.png"></A>
|
2022-04-12 23:32:40 -03:00
|
|
|
<A ID="tex2html1155"
|
2022-04-12 21:54:18 -03:00
|
|
|
HREF="node40.html">
|
|
|
|
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
|
2022-04-12 22:02:59 -03:00
|
|
|
SRC="up.png"></A>
|
2022-04-12 23:32:40 -03:00
|
|
|
<A ID="tex2html1149"
|
2022-04-12 21:54:18 -03:00
|
|
|
HREF="node40.html">
|
|
|
|
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
|
2022-04-12 22:02:59 -03:00
|
|
|
SRC="prev.png"></A>
|
2022-04-12 23:32:40 -03:00
|
|
|
<A ID="tex2html1157"
|
2022-04-12 21:54:18 -03:00
|
|
|
HREF="node4.html">
|
|
|
|
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
|
2022-04-12 22:02:59 -03:00
|
|
|
SRC="contents.png"></A>
|
2022-04-12 23:32:40 -03:00
|
|
|
<A ID="tex2html1159"
|
2022-04-12 21:54:18 -03:00
|
|
|
HREF="node201.html">
|
|
|
|
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
|
2022-04-12 22:02:59 -03:00
|
|
|
SRC="index.png"></A>
|
2022-04-12 21:54:18 -03:00
|
|
|
<BR>
|
2022-04-12 23:32:40 -03:00
|
|
|
<B> Next:</B> <A ID="tex2html1162"
|
2022-04-12 21:54:18 -03:00
|
|
|
HREF="node42.html">Control</A>
|
2022-04-12 23:32:40 -03:00
|
|
|
<B> Up:</B> <A ID="tex2html1156"
|
2022-04-12 21:54:18 -03:00
|
|
|
HREF="node40.html">Audio and control computations</A>
|
2022-04-12 23:32:40 -03:00
|
|
|
<B> Previous:</B> <A ID="tex2html1150"
|
2022-04-12 21:54:18 -03:00
|
|
|
HREF="node40.html">Audio and control computations</A>
|
2022-04-12 23:32:40 -03:00
|
|
|
<B> <A ID="tex2html1158"
|
2022-04-12 21:54:18 -03:00
|
|
|
HREF="node4.html">Contents</A></B>
|
2022-04-12 23:32:40 -03:00
|
|
|
<B> <A ID="tex2html1160"
|
2022-04-12 21:54:18 -03:00
|
|
|
HREF="node201.html">Index</A></B>
|
|
|
|
<BR>
|
|
|
|
<BR>
|
|
|
|
<!--End of Navigation Panel-->
|
|
|
|
|
2022-04-12 23:32:40 -03:00
|
|
|
<H1><A ID="SECTION00710000000000000000"></A>
|
|
|
|
<A ID="sect3.sampling"></A>
|
2022-04-12 21:54:18 -03:00
|
|
|
<BR>
|
|
|
|
The sampling theorem
|
|
|
|
</H1>
|
|
|
|
|
|
|
|
<P>
|
|
|
|
So far we have discussed digital audio signals as if they were capable of
|
|
|
|
describing any function of time, in the sense that knowing the values the
|
|
|
|
function takes on the integers should somehow determine the values it takes
|
|
|
|
between them. This isn't really true. For instance, suppose some function
|
|
|
|
<IMG
|
|
|
|
WIDTH="13" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
|
|
|
|
SRC="img112.png"
|
|
|
|
ALT="$f$"> (defined for real numbers) happens to attain the value 1 at all integers:
|
|
|
|
<BR><P></P>
|
|
|
|
<DIV ALIGN="CENTER">
|
|
|
|
<!-- MATH
|
|
|
|
\begin{displaymath}
|
|
|
|
f(n) = 1 \, , \, \, \, \, \, n = \, \, \ldots, -1, 0, 1, \ldots
|
|
|
|
\end{displaymath}
|
|
|
|
-->
|
|
|
|
|
|
|
|
<IMG
|
|
|
|
WIDTH="221" HEIGHT="28" BORDER="0"
|
|
|
|
SRC="img298.png"
|
|
|
|
ALT="\begin{displaymath}
|
|
|
|
f(n) = 1 \, , \, \, \, \, \, n = \, \, \ldots, -1, 0, 1, \ldots
|
|
|
|
\end{displaymath}">
|
|
|
|
</DIV>
|
|
|
|
<BR CLEAR="ALL">
|
|
|
|
<P></P>
|
|
|
|
We might guess that <IMG
|
|
|
|
WIDTH="60" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
|
|
|
SRC="img299.png"
|
|
|
|
ALT="$f(t)=1$"> for all real <IMG
|
|
|
|
WIDTH="9" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
|
|
|
SRC="img82.png"
|
|
|
|
ALT="$t$">. But perhaps <IMG
|
|
|
|
WIDTH="13" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
|
|
|
|
SRC="img112.png"
|
|
|
|
ALT="$f$"> happens
|
|
|
|
to be one for integers and zero everywhere else--that's a perfectly
|
|
|
|
good function too, and nothing about the function's values at the integers
|
|
|
|
distinguishes it from the simpler <IMG
|
|
|
|
WIDTH="60" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
|
|
|
SRC="img299.png"
|
|
|
|
ALT="$f(t)=1$">. But intuition tells us that
|
|
|
|
the constant function is in the <I>spirit</I> of digital audio signals,
|
|
|
|
whereas the one that hides a secret between the samples isn't. A function
|
2022-04-12 23:17:03 -03:00
|
|
|
that is "possible to sample" should be one for which we can use some reasonable
|
2022-04-12 21:54:18 -03:00
|
|
|
interpolation scheme to deduce its values on non-integers from its values on
|
|
|
|
integers.
|
|
|
|
|
|
|
|
<P>
|
|
|
|
It is customary at this point in discussions of computer music to invoke
|
|
|
|
the famous
|
2022-04-12 23:32:40 -03:00
|
|
|
<A ID="3554"></A><I>Nyquist theorem</I>.
|
2022-04-12 21:54:18 -03:00
|
|
|
This states (roughly speaking) that if a function is a finite or even infinite
|
|
|
|
combination of sinusoids, none of whose angular frequencies exceeds <IMG
|
|
|
|
WIDTH="13" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
|
|
|
SRC="img41.png"
|
|
|
|
ALT="$\pi $">,
|
|
|
|
then, theoretically at least, it is fully determined by the function's values
|
|
|
|
on the integers. One possible way of reconstructing the function would be
|
|
|
|
as a limit of higher- and higher-order polynomial interpolation.
|
|
|
|
|
|
|
|
<P>
|
|
|
|
The angular frequency <IMG
|
|
|
|
WIDTH="13" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
|
|
|
SRC="img41.png"
|
|
|
|
ALT="$\pi $">, called the <I>Nyquist frequency</I>, corresponds
|
|
|
|
to <IMG
|
|
|
|
WIDTH="31" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
|
|
|
SRC="img300.png"
|
|
|
|
ALT="$R/2$"> cycles per second if <IMG
|
|
|
|
WIDTH="15" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
|
|
|
|
SRC="img36.png"
|
|
|
|
ALT="$R$"> is the sample rate. The corresponding period
|
|
|
|
is two samples. The Nyquist frequency is the best we can do in the sense that
|
|
|
|
any real sinusoid of higher frequency is equal, at the integers, to one whose
|
|
|
|
frequency is lower than the Nyquist, and it is this lower frequency that will
|
|
|
|
get reconstructed by the ideal interpolation process. For instance, a
|
|
|
|
sinusoid with angular frequency between <IMG
|
|
|
|
WIDTH="13" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
|
|
|
SRC="img41.png"
|
|
|
|
ALT="$\pi $"> and <IMG
|
|
|
|
WIDTH="21" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
|
|
|
SRC="img16.png"
|
|
|
|
ALT="$2\pi $">, say <IMG
|
|
|
|
WIDTH="43" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
|
|
|
SRC="img301.png"
|
|
|
|
ALT="$\pi + \omega$">,
|
|
|
|
can be written as
|
|
|
|
<BR><P></P>
|
|
|
|
<DIV ALIGN="CENTER">
|
|
|
|
<!-- MATH
|
|
|
|
\begin{displaymath}
|
|
|
|
\cos((\pi + \omega)n + \phi) = \cos((\pi + \omega)n + \phi - 2\pi n)
|
|
|
|
\end{displaymath}
|
|
|
|
-->
|
|
|
|
|
|
|
|
<IMG
|
|
|
|
WIDTH="314" HEIGHT="28" BORDER="0"
|
|
|
|
SRC="img302.png"
|
|
|
|
ALT="\begin{displaymath}
|
|
|
|
\cos((\pi + \omega)n + \phi) = \cos((\pi + \omega)n + \phi - 2\pi n)
|
|
|
|
\end{displaymath}">
|
|
|
|
</DIV>
|
|
|
|
<BR CLEAR="ALL">
|
|
|
|
<P></P>
|
|
|
|
<BR><P></P>
|
|
|
|
<DIV ALIGN="CENTER">
|
|
|
|
<!-- MATH
|
|
|
|
\begin{displaymath}
|
|
|
|
= \cos((\omega - \pi)n + \phi)
|
|
|
|
\end{displaymath}
|
|
|
|
-->
|
|
|
|
|
|
|
|
<IMG
|
|
|
|
WIDTH="139" HEIGHT="28" BORDER="0"
|
|
|
|
SRC="img303.png"
|
|
|
|
ALT="\begin{displaymath}
|
|
|
|
= \cos((\omega - \pi)n + \phi)
|
|
|
|
\end{displaymath}">
|
|
|
|
</DIV>
|
|
|
|
<BR CLEAR="ALL">
|
|
|
|
<P></P>
|
|
|
|
<BR><P></P>
|
|
|
|
<DIV ALIGN="CENTER">
|
|
|
|
<!-- MATH
|
|
|
|
\begin{displaymath}
|
|
|
|
= \cos((\pi - \omega)n - \phi)
|
|
|
|
\end{displaymath}
|
|
|
|
-->
|
|
|
|
|
|
|
|
<IMG
|
|
|
|
WIDTH="139" HEIGHT="28" BORDER="0"
|
|
|
|
SRC="img304.png"
|
|
|
|
ALT="\begin{displaymath}
|
|
|
|
= \cos((\pi - \omega)n - \phi)
|
|
|
|
\end{displaymath}">
|
|
|
|
</DIV>
|
|
|
|
<BR CLEAR="ALL">
|
|
|
|
<P></P>
|
|
|
|
for all integers <IMG
|
|
|
|
WIDTH="13" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
|
|
|
SRC="img75.png"
|
|
|
|
ALT="$n$">. (If <IMG
|
|
|
|
WIDTH="13" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
|
|
|
SRC="img75.png"
|
|
|
|
ALT="$n$"> weren't an integer the first step would fail.)
|
|
|
|
So a sinusoid with frequency between <IMG
|
|
|
|
WIDTH="13" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
|
|
|
SRC="img41.png"
|
|
|
|
ALT="$\pi $"> and <IMG
|
|
|
|
WIDTH="21" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
|
|
|
SRC="img16.png"
|
|
|
|
ALT="$2\pi $"> is equal, on the
|
|
|
|
integers at least, to one with frequency between 0 and <IMG
|
|
|
|
WIDTH="13" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
|
|
|
SRC="img41.png"
|
|
|
|
ALT="$\pi $">; you simply can't
|
2022-04-12 23:17:03 -03:00
|
|
|
tell the two apart. And since any conversion hardware should do the "right"
|
2022-04-12 21:54:18 -03:00
|
|
|
thing and reconstruct the lower-frequency sinusoid, any higher-frequency one
|
|
|
|
you try to synthesize will come out your speakers at the wrong
|
|
|
|
frequency--specifically, you will hear the unique frequency between 0 and <IMG
|
|
|
|
WIDTH="13" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
|
|
|
SRC="img41.png"
|
|
|
|
ALT="$\pi $">
|
|
|
|
that the higher frequency lands on when reduced in the above way. This
|
|
|
|
phenomenon is called
|
|
|
|
<I>foldover</I>,
|
2022-04-12 23:32:40 -03:00
|
|
|
<A ID="3558"></A>
|
2022-04-12 21:54:18 -03:00
|
|
|
because the half-line of frequencies from 0
|
|
|
|
to <IMG
|
|
|
|
WIDTH="19" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
|
|
|
SRC="img305.png"
|
|
|
|
ALT="$\infty$"> is folded back and forth, in lengths of <IMG
|
|
|
|
WIDTH="13" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
|
|
|
SRC="img41.png"
|
|
|
|
ALT="$\pi $">, onto the interval
|
|
|
|
from 0 to <IMG
|
|
|
|
WIDTH="13" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
|
|
|
SRC="img41.png"
|
|
|
|
ALT="$\pi $">. The word
|
|
|
|
<I>aliasing</I>
|
2022-04-12 23:32:40 -03:00
|
|
|
<A ID="3560"></A>means the same thing. Figure <A HREF="#fig03.01">3.1</A> shows that sinusoids of angular
|
2022-04-12 21:54:18 -03:00
|
|
|
frequencies <IMG
|
|
|
|
WIDTH="29" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
|
|
|
SRC="img5.png"
|
|
|
|
ALT="$\pi /2$"> and <IMG
|
|
|
|
WIDTH="37" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
|
|
|
SRC="img6.png"
|
|
|
|
ALT="$3\pi /2$">, for instance, can't be distinguished
|
|
|
|
as digital audio signals.
|
|
|
|
|
|
|
|
<P>
|
|
|
|
|
2022-04-12 23:32:40 -03:00
|
|
|
<DIV ALIGN="CENTER"><A ID="fig03.01"></A><A ID="3564"></A>
|
2022-04-12 21:54:18 -03:00
|
|
|
<TABLE>
|
|
|
|
<CAPTION ALIGN="BOTTOM"><STRONG>Figure 3.1:</STRONG>
|
|
|
|
Two real sinusoids, with angular frequencies <IMG
|
|
|
|
WIDTH="29" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
|
|
|
SRC="img5.png"
|
|
|
|
ALT="$\pi /2$"> and <IMG
|
|
|
|
WIDTH="37" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
|
|
|
SRC="img6.png"
|
|
|
|
ALT="$3\pi /2$">,
|
|
|
|
showing that they coincide at integers. A digital audio signal can't
|
|
|
|
distinguish between the two.</CAPTION>
|
|
|
|
<TR><TD><IMG
|
|
|
|
WIDTH="311" HEIGHT="110" BORDER="0"
|
|
|
|
SRC="img306.png"
|
|
|
|
ALT="\begin{figure}\psfig{file=figs/fig03.01.ps}\end{figure}"></TD></TR>
|
|
|
|
</TABLE>
|
|
|
|
</DIV>
|
|
|
|
|
|
|
|
<P>
|
|
|
|
We conclude that when, for instance, we're computing values of a
|
|
|
|
Fourier series (Page <A HREF="node14.html#eq-fourierseries"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]"
|
2022-04-12 22:02:59 -03:00
|
|
|
SRC="crossref.png"></A>),
|
2022-04-12 21:54:18 -03:00
|
|
|
either as a wavetable or as a real-time signal, we had better leave out any
|
|
|
|
sinusoid
|
|
|
|
in the sum whose frequency exceeds <IMG
|
|
|
|
WIDTH="13" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
|
|
|
SRC="img41.png"
|
|
|
|
ALT="$\pi $">. But the picture in general is not
|
|
|
|
this simple, since most techniques other than additive synthesis don't lead to
|
|
|
|
neat, band-limited signals (ones whose components stop at some limited
|
|
|
|
frequency). For example, a sawtooth wave of frequency <IMG
|
|
|
|
WIDTH="14" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
|
|
|
SRC="img27.png"
|
|
|
|
ALT="$\omega $">, of the form
|
|
|
|
put out by Pd's <TT>phasor~</TT> object but considered as a continuous
|
|
|
|
function <IMG
|
|
|
|
WIDTH="31" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
|
|
|
SRC="img307.png"
|
|
|
|
ALT="$f(t)$">, expands to:
|
|
|
|
<BR><P></P>
|
|
|
|
<DIV ALIGN="CENTER">
|
|
|
|
<!-- MATH
|
|
|
|
\begin{displaymath}
|
|
|
|
f(t) = {1 \over 2} - {1 \over \pi}
|
|
|
|
{ \left (
|
|
|
|
\sin(\omega t) + {{\sin(2 \omega t)} \over 2} +
|
|
|
|
{{\sin(3 \omega t)} \over 3} + \cdots
|
|
|
|
\right ) }
|
|
|
|
\end{displaymath}
|
|
|
|
-->
|
|
|
|
|
|
|
|
<IMG
|
|
|
|
WIDTH="357" HEIGHT="45" BORDER="0"
|
|
|
|
SRC="img308.png"
|
|
|
|
ALT="\begin{displaymath}
|
|
|
|
f(t) = {1 \over 2} - {1 \over \pi}
|
|
|
|
{ \left (
|
|
|
|
\sin(\omega ...
|
|
|
|
...\over 2} +
|
|
|
|
{{\sin(3 \omega t)} \over 3} + \cdots
|
|
|
|
\right ) }
|
|
|
|
\end{displaymath}">
|
|
|
|
</DIV>
|
|
|
|
<BR CLEAR="ALL">
|
|
|
|
<P></P>
|
|
|
|
which enjoys arbitrarily high frequencies; and moreover the hundredth partial
|
|
|
|
is only 40 dB weaker than the first one. At any but very low values of
|
|
|
|
<IMG
|
|
|
|
WIDTH="14" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
|
|
|
SRC="img27.png"
|
|
|
|
ALT="$\omega $">, the partials above <IMG
|
|
|
|
WIDTH="13" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
|
|
|
SRC="img41.png"
|
|
|
|
ALT="$\pi $"> will be audibly present--and, because of
|
|
|
|
foldover, they will be heard at incorrect frequencies. (This does not mean
|
|
|
|
that one shouldn't use sawtooth waves as phase generators--the wavetable
|
|
|
|
lookup step magically corrects the sawtooth's foldover--but one should think
|
|
|
|
twice before using a sawtooth wave itself as a digital sound source.)
|
|
|
|
|
|
|
|
<P>
|
|
|
|
Many synthesis techniques, even if not strictly band-limited, give partials
|
|
|
|
which may be made to drop off more rapidly than <IMG
|
|
|
|
WIDTH="28" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
|
|
|
SRC="img309.png"
|
|
|
|
ALT="$1/n$"> as in the sawtooth
|
|
|
|
example, and are thus more forgiving to work with digitally. In any case,
|
|
|
|
it is always a good idea to keep the possibility of foldover in mind, and
|
|
|
|
to train your ears to recognize it.
|
|
|
|
|
|
|
|
<P>
|
|
|
|
The first line of defense against foldover is simply to use high sample rates;
|
|
|
|
it is a good practice to systematically use the highest sample rate that your
|
|
|
|
computer can easily handle. The highest practical rate will vary according to
|
|
|
|
whether you are working in real time or not, CPU time and memory constraints,
|
|
|
|
and/or input and output hardware, and sometimes even software-imposed
|
|
|
|
limitations.
|
|
|
|
|
|
|
|
<P>
|
|
|
|
A very non-technical treatment of sampling theory is given in
|
|
|
|
[<A
|
|
|
|
HREF="node202.html#r-ballora03">Bal03</A>]. More detail can be found in [<A
|
|
|
|
HREF="node202.html#r-mathews69">Mat69</A>, pp. 1-30].
|
|
|
|
|
|
|
|
<P>
|
|
|
|
<HR>
|
|
|
|
<!--Navigation Panel-->
|
2022-04-12 23:32:40 -03:00
|
|
|
<A ID="tex2html1161"
|
2022-04-12 21:54:18 -03:00
|
|
|
HREF="node42.html">
|
|
|
|
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
|
2022-04-12 22:02:59 -03:00
|
|
|
SRC="next.png"></A>
|
2022-04-12 23:32:40 -03:00
|
|
|
<A ID="tex2html1155"
|
2022-04-12 21:54:18 -03:00
|
|
|
HREF="node40.html">
|
|
|
|
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
|
2022-04-12 22:02:59 -03:00
|
|
|
SRC="up.png"></A>
|
2022-04-12 23:32:40 -03:00
|
|
|
<A ID="tex2html1149"
|
2022-04-12 21:54:18 -03:00
|
|
|
HREF="node40.html">
|
|
|
|
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
|
2022-04-12 22:02:59 -03:00
|
|
|
SRC="prev.png"></A>
|
2022-04-12 23:32:40 -03:00
|
|
|
<A ID="tex2html1157"
|
2022-04-12 21:54:18 -03:00
|
|
|
HREF="node4.html">
|
|
|
|
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
|
2022-04-12 22:02:59 -03:00
|
|
|
SRC="contents.png"></A>
|
2022-04-12 23:32:40 -03:00
|
|
|
<A ID="tex2html1159"
|
2022-04-12 21:54:18 -03:00
|
|
|
HREF="node201.html">
|
|
|
|
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
|
2022-04-12 22:02:59 -03:00
|
|
|
SRC="index.png"></A>
|
2022-04-12 21:54:18 -03:00
|
|
|
<BR>
|
2022-04-12 23:32:40 -03:00
|
|
|
<B> Next:</B> <A ID="tex2html1162"
|
2022-04-12 21:54:18 -03:00
|
|
|
HREF="node42.html">Control</A>
|
2022-04-12 23:32:40 -03:00
|
|
|
<B> Up:</B> <A ID="tex2html1156"
|
2022-04-12 21:54:18 -03:00
|
|
|
HREF="node40.html">Audio and control computations</A>
|
2022-04-12 23:32:40 -03:00
|
|
|
<B> Previous:</B> <A ID="tex2html1150"
|
2022-04-12 21:54:18 -03:00
|
|
|
HREF="node40.html">Audio and control computations</A>
|
2022-04-12 23:32:40 -03:00
|
|
|
<B> <A ID="tex2html1158"
|
2022-04-12 21:54:18 -03:00
|
|
|
HREF="node4.html">Contents</A></B>
|
2022-04-12 23:32:40 -03:00
|
|
|
<B> <A ID="tex2html1160"
|
2022-04-12 21:54:18 -03:00
|
|
|
HREF="node201.html">Index</A></B>
|
|
|
|
<!--End of Navigation Panel-->
|
|
|
|
<ADDRESS>
|
|
|
|
Miller Puckette
|
|
|
|
2006-12-30
|
|
|
|
</ADDRESS>
|
|
|
|
</BODY>
|
|
|
|
</HTML>
|