miller-book/node108.html

633 lines
20 KiB
HTML

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 2002-2-1 (1.71)
original version by: Nikos Drakos, CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>Delay networks</TITLE>
<META NAME="description" CONTENT="Delay networks">
<META NAME="keywords" CONTENT="book">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META NAME="Generator" CONTENT="LaTeX2HTML v2002-2-1">
<META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">
<LINK REL="STYLESHEET" HREF="book.css">
<LINK REL="next" HREF="node109.html">
<LINK REL="previous" HREF="node107.html">
<LINK REL="up" HREF="node104.html">
<LINK REL="next" HREF="node109.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html2171"
HREF="node109.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="file:/usr/local/share/lib/latex2html/icons/next.png"></A>
<A NAME="tex2html2165"
HREF="node104.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="file:/usr/local/share/lib/latex2html/icons/up.png"></A>
<A NAME="tex2html2159"
HREF="node107.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="file:/usr/local/share/lib/latex2html/icons/prev.png"></A>
<A NAME="tex2html2167"
HREF="node4.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="file:/usr/local/share/lib/latex2html/icons/contents.png"></A>
<A NAME="tex2html2169"
HREF="node201.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="file:/usr/local/share/lib/latex2html/icons/index.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html2172"
HREF="node109.html">Recirculating delay networks</A>
<B> Up:</B> <A NAME="tex2html2166"
HREF="node104.html">Time shifts and delays</A>
<B> Previous:</B> <A NAME="tex2html2160"
HREF="node107.html">Time shifts and phase</A>
&nbsp; <B> <A NAME="tex2html2168"
HREF="node4.html">Contents</A></B>
&nbsp; <B> <A NAME="tex2html2170"
HREF="node201.html">Index</A></B>
<BR>
<BR>
<!--End of Navigation Panel-->
<H1><A NAME="SECTION001130000000000000000"></A>
<A NAME="sect7.network"></A>
<BR>
Delay networks
</H1>
<P>
<DIV ALIGN="CENTER"><A NAME="fig07.03"></A><A NAME="7867"></A>
<TABLE>
<CAPTION ALIGN="BOTTOM"><STRONG>Figure 7.3:</STRONG>
A delay network. Here we add the incoming signal to a delayed
copy of itself.</CAPTION>
<TR><TD><IMG
WIDTH="55" HEIGHT="219" BORDER="0"
SRC="img679.png"
ALT="\begin{figure}\psfig{file=figs/fig07.03.ps}\end{figure}"></TD></TR>
</TABLE>
</DIV>
<P>
If we consider our digital audio samples <IMG
WIDTH="36" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img669.png"
ALT="$X[n]$"> to correspond to
successive moments in time, then time shifting the signal by <IMG
WIDTH="11" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
SRC="img28.png"
ALT="$d$"> samples
corresponds to a
<A NAME="7870"></A>
<I>delay</I>
of <IMG
WIDTH="31" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img680.png"
ALT="$d/R$"> time units, where <IMG
WIDTH="15" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
SRC="img36.png"
ALT="$R$"> is the sample rate.
Figure <A HREF="#fig07.03">7.3</A> shows one example of a
<A NAME="7873"></A><I>linear delay network</I>:
an assembly of delay units, possibly with amplitude
scaling operations, combined using addition and subtraction. The output
is a linear function of the input, in the sense that adding two signals at the
input is the same as processing each one separately and adding the results.
Moreover, linear delay networks create no new frequencies in the output that
weren't present in the input, as long as the network remains time invariant,
so that the gains and delay times do not change with time.
<P>
In general there are two ways of thinking about delay networks. We can think
in the
<A NAME="7875"></A><I>time domain</I>,
in which we draw waveforms as functions of time (or of the index <IMG
WIDTH="13" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
SRC="img75.png"
ALT="$n$">), and
consider delays as time shifts. Alternatively we may think in the
<A NAME="7877"></A><I>frequency domain</I>,
in which we dose the input with a complex sinusoid (so that its output is a
sinusoid at the same frequency) and report the amplitude and/or phase change
wrought by the network, as a function of the frequency. We'll now look at the
delay network of Figure <A HREF="#fig07.03">7.3</A> in each of the two ways in turn.
<P>
<DIV ALIGN="CENTER"><A NAME="fig07.04"></A><A NAME="8340"></A>
<TABLE>
<CAPTION ALIGN="BOTTOM"><STRONG>Figure 7.4:</STRONG>
The time domain view of the delay network of Figure <A HREF="#fig07.03">7.3</A>.
The output is the sum of the input and its time shifted copy.</CAPTION>
<TR><TD><IMG
WIDTH="440" HEIGHT="257" BORDER="0"
SRC="img681.png"
ALT="\begin{figure}\psfig{file=figs/fig07.04.ps}\end{figure}"></TD></TR>
</TABLE>
</DIV>
<P>
Figure <A HREF="#fig07.04">7.4</A> shows the network's behavior in the time domain. We
invent some sort of suitable test function as input (it's a rectangular pulse
eight samples wide in this example) and graph the input and output as functions
of the sample number <IMG
WIDTH="13" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
SRC="img75.png"
ALT="$n$">. This particular delay network adds the input to a
delayed copy of itself.
<P>
A frequently used test function is an
<A NAME="7886"></A><I>impulse</I>,
which is a pulse lasting only one sample. The utility of this is that, if we
know the output of the network for an impulse, we can find the output for
any other digital audio signal--because any signal <IMG
WIDTH="31" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img80.png"
ALT="$x[n]$"> is a sum of
impulses, one of height <IMG
WIDTH="29" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img682.png"
ALT="$x[0]$">, the next one occurring one sample later
and having height <IMG
WIDTH="29" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img683.png"
ALT="$x[1]$">, and so on. Later, when the networks get
more complicated, we will move to using impulses as input signals to show
their time-domain behavior.
<P>
On the other hand, we can analyze the same network in the frequency domain
by considering a (complex-valued) test signal,
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
X[n] = {Z^n}
\end{displaymath}
-->
<IMG
WIDTH="74" HEIGHT="28" BORDER="0"
SRC="img684.png"
ALT="\begin{displaymath}
X[n] = {Z^n}
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
where Z has unit magnitude and argument <IMG
WIDTH="14" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
SRC="img27.png"
ALT="$\omega $">. We already know that the
output is another complex sinusoid with the same frequency, that is,
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
H {Z^N}
\end{displaymath}
-->
<IMG
WIDTH="37" HEIGHT="24" BORDER="0"
SRC="img685.png"
ALT="\begin{displaymath}
H {Z^N}
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
for some complex number <IMG
WIDTH="18" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
SRC="img25.png"
ALT="$H$"> (which we want to find). So we write the output
directly as the sum of the input and its delayed copy:
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
{Z^n} + {Z^{-d}} {Z^n} = (1 + {Z^{-d}}) {Z^n}
\end{displaymath}
-->
<IMG
WIDTH="200" HEIGHT="28" BORDER="0"
SRC="img686.png"
ALT="\begin{displaymath}
{Z^n} + {Z^{-d}} {Z^n} = (1 + {Z^{-d}}) {Z^n}
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
and find by inspection that:
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
H = 1 + {Z^{-d}}
\end{displaymath}
-->
<IMG
WIDTH="92" HEIGHT="25" BORDER="0"
SRC="img687.png"
ALT="\begin{displaymath}
H = 1 + {Z^{-d}}
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
We can understand the frequency-domain behavior of this delay network
by studying how the complex number <IMG
WIDTH="18" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
SRC="img25.png"
ALT="$H$"> varies as a function of the
angluar frequency <IMG
WIDTH="14" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
SRC="img27.png"
ALT="$\omega $">. We are especially interested in its argument and
magnitude--which tell us the relative phase and amplitude of the sinusoid
that comes out. We will work this example out in detail to show how the
arithmetic of complex numbers can predict what happens when sinusoids are
combined additively.
<P>
<DIV ALIGN="CENTER"><A NAME="fig07.05"></A><A NAME="8344"></A>
<TABLE>
<CAPTION ALIGN="BOTTOM"><STRONG>Figure 7.5:</STRONG>
Analysis, in the complex plane, of the frequency-domain behavior of
the delay network of Figure <A HREF="#fig07.03">7.3</A>. The complex number <IMG
WIDTH="15" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
SRC="img20.png"
ALT="$Z$"> encodes
the frequency of the input. The delay line output is the input times
<IMG
WIDTH="34" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img24.png"
ALT="$Z^-d$">. The total (complex) gain is <IMG
WIDTH="18" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
SRC="img25.png"
ALT="$H$">. We find the magnitude and argument
of <IMG
WIDTH="18" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
SRC="img25.png"
ALT="$H$"> by symmetrizing the sum, rotating it by <IMG
WIDTH="27" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img26.png"
ALT="$d/2$"> times the
angular frequency of the input.</CAPTION>
<TR><TD><IMG
WIDTH="355" HEIGHT="207" BORDER="0"
SRC="img688.png"
ALT="\begin{figure}\psfig{file=figs/fig07.05.ps}\end{figure}"></TD></TR>
</TABLE>
</DIV>
<P>
Figure <A HREF="#fig07.05">7.5</A> shows the result, in the complex plane, when the
quantities <IMG
WIDTH="11" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
SRC="img262.png"
ALT="$1$"> and <IMG
WIDTH="32" HEIGHT="17" ALIGN="BOTTOM" BORDER="0"
SRC="img676.png"
ALT="${Z^{-d}}$"> are combined additively. To add complex numbers
we add their real and complex parts separately. So the complex number <IMG
WIDTH="11" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
SRC="img262.png"
ALT="$1$"> (real
part <IMG
WIDTH="11" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
SRC="img262.png"
ALT="$1$">, imaginary part <IMG
WIDTH="11" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
SRC="img179.png"
ALT="$0$">) is added coordinate-wise to the complex
number <IMG
WIDTH="32" HEIGHT="17" ALIGN="BOTTOM" BORDER="0"
SRC="img676.png"
ALT="${Z^{-d}}$"> (real part <!-- MATH
$\cos(-d \omega)$
-->
<IMG
WIDTH="68" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img689.png"
ALT="$\cos(-d \omega)$">, imaginary part
<!-- MATH
$\sin(-d \omega)$
-->
<IMG
WIDTH="66" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img690.png"
ALT="$\sin(-d \omega)$">). This is shown graphically by making a parallelogram,
with corners at the origin and at the two points to be added, and whose
fourth corner is the sum <IMG
WIDTH="18" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
SRC="img25.png"
ALT="$H$">.
<P>
As the figure shows, the result can be understood by symmetrizing it about
the real axis: instead of <IMG
WIDTH="11" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
SRC="img262.png"
ALT="$1$"> and <IMG
WIDTH="32" HEIGHT="17" ALIGN="BOTTOM" BORDER="0"
SRC="img676.png"
ALT="${Z^{-d}}$">, it's easier to sum the
quantities <IMG
WIDTH="35" HEIGHT="17" ALIGN="BOTTOM" BORDER="0"
SRC="img691.png"
ALT="${Z^{d/2}}$"> and <IMG
WIDTH="45" HEIGHT="17" ALIGN="BOTTOM" BORDER="0"
SRC="img692.png"
ALT="${Z^{-d/2}}$">, because they are symmetric about
the real (horizontal) axis. (Strictly speaking, we haven't properly defined
the quantities <IMG
WIDTH="35" HEIGHT="17" ALIGN="BOTTOM" BORDER="0"
SRC="img691.png"
ALT="${Z^{d/2}}$"> and <IMG
WIDTH="45" HEIGHT="17" ALIGN="BOTTOM" BORDER="0"
SRC="img692.png"
ALT="${Z^{-d/2}}$">; we are using those expressions
to denote unit
complex numbers whose arguments are half those of <IMG
WIDTH="22" HEIGHT="17" ALIGN="BOTTOM" BORDER="0"
SRC="img693.png"
ALT="$Z^d$"> and <IMG
WIDTH="32" HEIGHT="17" ALIGN="BOTTOM" BORDER="0"
SRC="img694.png"
ALT="$Z^{-d}$">, so
that squaring them would give <IMG
WIDTH="22" HEIGHT="17" ALIGN="BOTTOM" BORDER="0"
SRC="img695.png"
ALT="${Z^{d}}$"> and <IMG
WIDTH="32" HEIGHT="17" ALIGN="BOTTOM" BORDER="0"
SRC="img676.png"
ALT="${Z^{-d}}$">.)
We rewrite the gain as:
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
H = {Z^{-d/2}} ({Z^{d/2}} + {Z^{-d/2}})
\end{displaymath}
-->
<IMG
WIDTH="183" HEIGHT="28" BORDER="0"
SRC="img696.png"
ALT="\begin{displaymath}
H = {Z^{-d/2}} ({Z^{d/2}} + {Z^{-d/2}})
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
The first term is a phase shift of <IMG
WIDTH="50" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img697.png"
ALT="$-d \omega / 2$">. The second term is
best understood in rectangular form:
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
{Z^{d/2}} + {Z^{-d/2}}
\end{displaymath}
-->
<IMG
WIDTH="92" HEIGHT="25" BORDER="0"
SRC="img698.png"
ALT="\begin{displaymath}
{Z^{d/2}} + {Z^{-d/2}}
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
= (\cos(\omega d / 2) + i \sin(\omega d / 2)) +
(\cos(\omega d / 2) - i \sin(\omega d / 2))
\end{displaymath}
-->
<IMG
WIDTH="384" HEIGHT="28" BORDER="0"
SRC="img699.png"
ALT="\begin{displaymath}
= (\cos(\omega d / 2) + i \sin(\omega d / 2)) +
(\cos(\omega d / 2) - i \sin(\omega d / 2))
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
= 2 \cos(\omega d / 2)
\end{displaymath}
-->
<IMG
WIDTH="93" HEIGHT="28" BORDER="0"
SRC="img700.png"
ALT="\begin{displaymath}
= 2 \cos(\omega d / 2)
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
This real-valued quantity may be either positive or negative; its absolute value
gives the magnitude of the output:
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
|H| = 2 |\cos(\omega d / 2) |
\end{displaymath}
-->
<IMG
WIDTH="129" HEIGHT="28" BORDER="0"
SRC="img701.png"
ALT="\begin{displaymath}
\vert H\vert = 2 \vert\cos(\omega d / 2) \vert
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
The quantity <IMG
WIDTH="26" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img30.png"
ALT="$\vert H\vert$"> is called the
<A NAME="7917"></A><I>gain</I>
of the delay network at the angular frequency <IMG
WIDTH="14" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
SRC="img27.png"
ALT="$\omega $">, and is graphed in
Figure <A HREF="#fig07.06">7.6</A>. The frequency-dependent gain of a delay network (that
is, the gain as a function of frequency) is called the network's
<A NAME="7920"></A><I>frequency response</I>.
<P>
Since the network has greater gain at some frequencies
than at others, it may be considered as a
<A NAME="7922"></A><I>filter</I>
that can be used to separate certain components of a sound from others.
Because of the shape of this particular gain expression as a function of
<IMG
WIDTH="14" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
SRC="img27.png"
ALT="$\omega $">, this kind of delay network
is called a (non-recirculating)
<A NAME="7924"></A><I>comb filter</I>.
<P>
<DIV ALIGN="CENTER"><A NAME="fig07.06"></A><A NAME="8359"></A>
<TABLE>
<CAPTION ALIGN="BOTTOM"><STRONG>Figure 7.6:</STRONG>
Gain of the delay network of Figure <A HREF="#fig07.03">7.3</A>, shown as a function
of angular frequency <IMG
WIDTH="14" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
SRC="img27.png"
ALT="$\omega $">.</CAPTION>
<TR><TD><IMG
WIDTH="326" HEIGHT="137" BORDER="0"
SRC="img702.png"
ALT="\begin{figure}\psfig{file=figs/fig07.06.ps}\end{figure}"></TD></TR>
</TABLE>
</DIV>
<P>
The output of the network is a sum of two sinusoids of equal amplitude, and
whose phases differ by <IMG
WIDTH="22" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
SRC="img703.png"
ALT="$\omega d $">. The resulting frequency response agrees
with common sense: if the angular frequency <IMG
WIDTH="14" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
SRC="img27.png"
ALT="$\omega $"> is set so that an integer
number of periods fit into <IMG
WIDTH="11" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
SRC="img28.png"
ALT="$d$"> samples, i.e., if <IMG
WIDTH="14" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
SRC="img27.png"
ALT="$\omega $"> is a multiple of
<IMG
WIDTH="37" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img704.png"
ALT="$2\pi/d$">, the output of the delay is exactly the same as the original signal,
and so the two combine to make an output with twice the original amplitude. On
the other hand, if for example we take <!-- MATH
$\omega = \pi/d$
-->
<IMG
WIDTH="61" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img705.png"
ALT="$\omega = \pi/d$"> so that the delay is
half the period, then the delay output is out of phase and cancels the input
exactly.
<P>
This particular delay network has an interesting application: if we have a
periodic (or nearly periodic) incoming signal, whose fundamental frequency is
<IMG
WIDTH="14" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
SRC="img27.png"
ALT="$\omega $"> radians per sample, we can tune the comb filter so that the peaks in
the gain are aligned at even harmonics and the odd ones fall where the gain is
zero. To do this we choose <IMG
WIDTH="61" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img706.png"
ALT="$d=\pi/\omega$">, i.e., set the delay time to exactly
one half period of the incoming signal. In this way we get a new signal whose
harmonics are <!-- MATH
$2\omega, 4\omega, 6\omega, \ldots$
-->
<IMG
WIDTH="98" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
SRC="img707.png"
ALT="$2\omega, 4\omega, 6\omega, \ldots$">, and so it now has a new
fundamental frequency at twice the original one. Except for a factor of two,
the amplitudes of the remaining harmonics still follow the spectral envelope of
the original sound. So we have a tool now for raising the pitch of an incoming
sound by an octave without changing its spectral envelope. This octave doubler
is the reverse of the octave divider introduced back in Chapter
<A HREF="node75.html#chapter-modulation">5</A>.
<P>
The time and frequency domains offer complementary ways of looking
at the same delay network. When the delays inside the network are smaller than
the ear's ability to resolve events in time--less than about 20
milliseconds--the time domain picture becomes less relevant to our
understanding of the delay network, and we turn mostly to the frequency-domain
picture. On the other hand, when delays are greater than about 50
msec, the peaks and valleys of plots showing gain versus frequency (such as
that of Figure <A HREF="#fig07.06">7.6</A>) crowd so closely together that
the frequency-domain view becomes less important. Both are nonetheless valid
over the entire range of possible delay times.
<P>
<HR>
<!--Navigation Panel-->
<A NAME="tex2html2171"
HREF="node109.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="file:/usr/local/share/lib/latex2html/icons/next.png"></A>
<A NAME="tex2html2165"
HREF="node104.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="file:/usr/local/share/lib/latex2html/icons/up.png"></A>
<A NAME="tex2html2159"
HREF="node107.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="file:/usr/local/share/lib/latex2html/icons/prev.png"></A>
<A NAME="tex2html2167"
HREF="node4.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="file:/usr/local/share/lib/latex2html/icons/contents.png"></A>
<A NAME="tex2html2169"
HREF="node201.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="file:/usr/local/share/lib/latex2html/icons/index.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html2172"
HREF="node109.html">Recirculating delay networks</A>
<B> Up:</B> <A NAME="tex2html2166"
HREF="node104.html">Time shifts and delays</A>
<B> Previous:</B> <A NAME="tex2html2160"
HREF="node107.html">Time shifts and phase</A>
&nbsp; <B> <A NAME="tex2html2168"
HREF="node4.html">Contents</A></B>
&nbsp; <B> <A NAME="tex2html2170"
HREF="node201.html">Index</A></B>
<!--End of Navigation Panel-->
<ADDRESS>
Miller Puckette
2006-12-30
</ADDRESS>
</BODY>
</HTML>