493 lines
14 KiB
HTML
493 lines
14 KiB
HTML
<!DOCTYPE html>
|
|
|
|
<!--Converted with LaTeX2HTML 2002-2-1 (1.71)
|
|
original version by: Nikos Drakos, CBLU, University of Leeds
|
|
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
|
|
* with significant contributions from:
|
|
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
|
|
<HTML>
|
|
<HEAD>
|
|
|
|
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
|
|
|
|
|
<TITLE>Frequency and phase modulation</TITLE>
|
|
<META NAME="description" CONTENT="Frequency and phase modulation">
|
|
<META NAME="keywords" CONTENT="book">
|
|
<META NAME="resource-type" CONTENT="document">
|
|
<META NAME="distribution" CONTENT="global">
|
|
|
|
<META NAME="Generator" CONTENT="LaTeX2HTML v2002-2-1">
|
|
<META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">
|
|
|
|
<LINK REL="STYLESHEET" HREF="book.css">
|
|
|
|
<LINK REL="next" HREF="node80.html">
|
|
<LINK REL="previous" HREF="node78.html">
|
|
<LINK REL="up" HREF="node75.html">
|
|
<LINK REL="next" HREF="node80.html">
|
|
</HEAD>
|
|
|
|
<BODY >
|
|
<!--Navigation Panel-->
|
|
<A ID="tex2html1725"
|
|
HREF="node80.html">
|
|
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
|
|
SRC="next.png"></A>
|
|
<A ID="tex2html1719"
|
|
HREF="node75.html">
|
|
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
|
|
SRC="up.png"></A>
|
|
<A ID="tex2html1713"
|
|
HREF="node78.html">
|
|
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
|
|
SRC="prev.png"></A>
|
|
<A ID="tex2html1721"
|
|
HREF="node4.html">
|
|
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
|
|
SRC="contents.png"></A>
|
|
<A ID="tex2html1723"
|
|
HREF="node201.html">
|
|
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
|
|
SRC="index.png"></A>
|
|
<BR>
|
|
<B> Next:</B> <A ID="tex2html1726"
|
|
HREF="node80.html">Examples</A>
|
|
<B> Up:</B> <A ID="tex2html1720"
|
|
HREF="node75.html">Modulation</A>
|
|
<B> Previous:</B> <A ID="tex2html1714"
|
|
HREF="node78.html">Waveshaping</A>
|
|
<B> <A ID="tex2html1722"
|
|
HREF="node4.html">Contents</A></B>
|
|
<B> <A ID="tex2html1724"
|
|
HREF="node201.html">Index</A></B>
|
|
<BR>
|
|
<BR>
|
|
<!--End of Navigation Panel-->
|
|
|
|
<H1><A ID="SECTION00940000000000000000"></A>
|
|
<A ID="sect5.FM"></A>
|
|
<BR>
|
|
Frequency and phase modulation
|
|
</H1>
|
|
|
|
<P>
|
|
If a sinusoid is given a frequency which varies slowly in time we hear it as
|
|
having a varying pitch. But if the pitch changes so quickly that our ears
|
|
can't track the change--for instance, if the change itself occurs at or
|
|
above the fundamental frequency of the sinusoid--we hear a timbral change.
|
|
The timbres so generated are rich and widely varying. The discovery by
|
|
John Chowning of this
|
|
possibility [<A
|
|
HREF="node202.html#r-chowning73">Cho73</A>] revolutionized the field of computer music.
|
|
Here we develop
|
|
<A ID="5762"></A><A ID="5763"></A><I>frequency modulation</I>,
|
|
usually called <I>FM</I>,
|
|
as a special case of waveshaping [<A
|
|
HREF="node202.html#r-lebrun79">Leb79</A>]
|
|
[<A
|
|
HREF="node202.html#r-dodge85">DJ85</A>, pp.155-158]; the
|
|
analysis given here is somewhat different [<A
|
|
HREF="node202.html#r-puckette01a">Puc01</A>].
|
|
|
|
<P>
|
|
The FM technique, in its simplest form, is shown in Figure <A HREF="#fig05.08">5.8</A>
|
|
(part a).
|
|
A frequency-modulated sinusoid is one whose frequency varies sinusoidally, at
|
|
some angular frequency <IMG
|
|
WIDTH="25" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img463.png"
|
|
ALT="$\omega_m$">, about a central frequency <IMG
|
|
WIDTH="19" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img464.png"
|
|
ALT="$\omega_c$">, so
|
|
that the instantaneous frequencies vary between <IMG
|
|
WIDTH="67" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img465.png"
|
|
ALT="$(1-r)\omega_c $"> and
|
|
<!-- MATH
|
|
$(1+r) \omega_c$
|
|
-->
|
|
<IMG
|
|
WIDTH="67" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img466.png"
|
|
ALT="$(1+r) \omega_c$">, with parameters <IMG
|
|
WIDTH="25" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img463.png"
|
|
ALT="$\omega_m$"> controlling the frequency of
|
|
variation, and <IMG
|
|
WIDTH="11" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
|
SRC="img467.png"
|
|
ALT="$r$"> controlling the depth of variation. The parameters
|
|
<IMG
|
|
WIDTH="19" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img464.png"
|
|
ALT="$\omega_c$">, <IMG
|
|
WIDTH="25" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img463.png"
|
|
ALT="$\omega_m$">, and <IMG
|
|
WIDTH="11" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
|
SRC="img467.png"
|
|
ALT="$r$"> are called the
|
|
<A ID="5770"></A><A ID="5771"></A><I>carrier frequency</I>, the
|
|
<A ID="5773"></A><I>modulation frequency</I>, and the
|
|
<A ID="5775"></A><I>index of modulation</I>, respectively.
|
|
|
|
<P>
|
|
It is customary to use a simpler, essentially equivalent formulation in
|
|
which the phase, instead of the frequency, of the carrier sinusoid is
|
|
modulated sinusoidally. (This gives an equivalent result since the
|
|
instantaneous frequency is the rate of change of phase, and since the
|
|
rate of change of a sinusoid is just another sinusoid.) The
|
|
phase modulation formulation is shown in part (b) of the figure.
|
|
|
|
<P>
|
|
We can analyze the result of phase modulation as follows, assuming that
|
|
the modulating oscillator and the wavetable are both sinusoidal, and that
|
|
the carrier and modulation frequencies don't themselves vary
|
|
in time. The resulting signal can then be written as
|
|
<BR><P></P>
|
|
<DIV ALIGN="CENTER">
|
|
<!-- MATH
|
|
\begin{displaymath}
|
|
x[n] = \cos(a \cos(\omega_m n) + \omega_c n )
|
|
\end{displaymath}
|
|
-->
|
|
|
|
<IMG
|
|
WIDTH="202" HEIGHT="28" BORDER="0"
|
|
SRC="img468.png"
|
|
ALT="\begin{displaymath}
|
|
x[n] = \cos(a \cos(\omega_m n) + \omega_c n )
|
|
\end{displaymath}">
|
|
</DIV>
|
|
<BR CLEAR="ALL">
|
|
<P></P>
|
|
The
|
|
parameter <IMG
|
|
WIDTH="11" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
|
SRC="img4.png"
|
|
ALT="$a$">, which takes the place of the earlier parameter <IMG
|
|
WIDTH="11" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
|
SRC="img467.png"
|
|
ALT="$r$">, is
|
|
likewise called the index of modulation; it too
|
|
controls the extent of frequency variation relative to the carrier frequency
|
|
<IMG
|
|
WIDTH="19" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img464.png"
|
|
ALT="$\omega_c$">. If <IMG
|
|
WIDTH="41" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
|
SRC="img469.png"
|
|
ALT="$a=0$">, there
|
|
is no frequency variation and the expression reduces to the unmodified,
|
|
carrier sinusoid; as <IMG
|
|
WIDTH="11" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
|
SRC="img4.png"
|
|
ALT="$a$"> increases the waveform becomes more complex.
|
|
|
|
<P>
|
|
|
|
<DIV ALIGN="CENTER"><A ID="fig05.08"></A><A ID="5779"></A>
|
|
<TABLE>
|
|
<CAPTION ALIGN="BOTTOM"><STRONG>Figure 5.8:</STRONG>
|
|
Block diagram for frequency modulation (FM) synthesis: (a) the classic
|
|
form; (b) realized as phase modulation.</CAPTION>
|
|
<TR><TD><IMG
|
|
WIDTH="507" HEIGHT="499" BORDER="0"
|
|
SRC="img470.png"
|
|
ALT="\begin{figure}\psfig{file=figs/fig05.08.ps}\end{figure}"></TD></TR>
|
|
</TABLE>
|
|
</DIV>
|
|
|
|
<P>
|
|
To analyse the resulting spectrum we can rewrite the signal as,
|
|
<BR><P></P>
|
|
<DIV ALIGN="CENTER">
|
|
<!-- MATH
|
|
\begin{displaymath}
|
|
x[n] = \cos(\omega_c n) * \cos(a \cos(\omega_m n))
|
|
\end{displaymath}
|
|
-->
|
|
|
|
<IMG
|
|
WIDTH="231" HEIGHT="28" BORDER="0"
|
|
SRC="img471.png"
|
|
ALT="\begin{displaymath}
|
|
x[n] = \cos(\omega_c n) * \cos(a \cos(\omega_m n))
|
|
\end{displaymath}">
|
|
</DIV>
|
|
<BR CLEAR="ALL">
|
|
<P></P>
|
|
<BR><P></P>
|
|
<DIV ALIGN="CENTER">
|
|
<!-- MATH
|
|
\begin{displaymath}
|
|
- \sin(\omega_c n) * \sin(a \cos(\omega_m n))
|
|
\end{displaymath}
|
|
-->
|
|
|
|
<IMG
|
|
WIDTH="194" HEIGHT="28" BORDER="0"
|
|
SRC="img472.png"
|
|
ALT="\begin{displaymath}
|
|
- \sin(\omega_c n) * \sin(a \cos(\omega_m n))
|
|
\end{displaymath}">
|
|
</DIV>
|
|
<BR CLEAR="ALL">
|
|
<P></P>
|
|
We can consider the result as a sum of two waveshaping
|
|
generators, each operating on a sinusoid of frequency <IMG
|
|
WIDTH="25" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img463.png"
|
|
ALT="$\omega_m$"> and
|
|
with a waveshaping index <IMG
|
|
WIDTH="11" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
|
SRC="img4.png"
|
|
ALT="$a$">, and each ring modulated with a sinusoid of
|
|
frequency <IMG
|
|
WIDTH="19" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img464.png"
|
|
ALT="$\omega_c$">. The waveshaping function <IMG
|
|
WIDTH="13" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img112.png"
|
|
ALT="$f$"> is given by
|
|
<!-- MATH
|
|
$f(x) = \cos(x)$
|
|
-->
|
|
<IMG
|
|
WIDTH="98" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img473.png"
|
|
ALT="$f(x) = \cos(x)$"> for the first term and by <!-- MATH
|
|
$f(x) = \sin(x)$
|
|
-->
|
|
<IMG
|
|
WIDTH="96" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img474.png"
|
|
ALT="$f(x) = \sin(x)$"> for the second.
|
|
|
|
<P>
|
|
Returning to Figure <A HREF="node77.html#fig05.04">5.4</A>, we can predict what the
|
|
spectrum will look like. The two harmonic spectra, of the waveshaping outputs
|
|
<BR><P></P>
|
|
<DIV ALIGN="CENTER">
|
|
<!-- MATH
|
|
\begin{displaymath}
|
|
\cos(a \cos(\omega_m n))
|
|
\end{displaymath}
|
|
-->
|
|
|
|
<IMG
|
|
WIDTH="108" HEIGHT="28" BORDER="0"
|
|
SRC="img475.png"
|
|
ALT="\begin{displaymath}
|
|
\cos(a \cos(\omega_m n))
|
|
\end{displaymath}">
|
|
</DIV>
|
|
<BR CLEAR="ALL">
|
|
<P></P>
|
|
and
|
|
<BR><P></P>
|
|
<DIV ALIGN="CENTER">
|
|
<!-- MATH
|
|
\begin{displaymath}
|
|
\sin(a \cos(\omega_m n))
|
|
\end{displaymath}
|
|
-->
|
|
|
|
<IMG
|
|
WIDTH="107" HEIGHT="28" BORDER="0"
|
|
SRC="img476.png"
|
|
ALT="\begin{displaymath}
|
|
\sin(a \cos(\omega_m n))
|
|
\end{displaymath}">
|
|
</DIV>
|
|
<BR CLEAR="ALL">
|
|
<P></P>
|
|
have, respectively, harmonics tuned to
|
|
<BR><P></P>
|
|
<DIV ALIGN="CENTER">
|
|
<!-- MATH
|
|
\begin{displaymath}
|
|
0, 2\omega_m, 4\omega_m, \ldots
|
|
\end{displaymath}
|
|
-->
|
|
|
|
<IMG
|
|
WIDTH="105" HEIGHT="27" BORDER="0"
|
|
SRC="img477.png"
|
|
ALT="\begin{displaymath}
|
|
0, 2\omega_m, 4\omega_m, \ldots
|
|
\end{displaymath}">
|
|
</DIV>
|
|
<BR CLEAR="ALL">
|
|
<P></P>
|
|
and
|
|
<BR><P></P>
|
|
<DIV ALIGN="CENTER">
|
|
<!-- MATH
|
|
\begin{displaymath}
|
|
\omega_m, 3\omega_m, 5\omega_m, \ldots
|
|
\end{displaymath}
|
|
-->
|
|
|
|
<IMG
|
|
WIDTH="120" HEIGHT="27" BORDER="0"
|
|
SRC="img478.png"
|
|
ALT="\begin{displaymath}
|
|
\omega_m, 3\omega_m, 5\omega_m, \ldots
|
|
\end{displaymath}">
|
|
</DIV>
|
|
<BR CLEAR="ALL">
|
|
<P></P>
|
|
and each is multiplied by a sinusoid at the carrier frequency. So there
|
|
will be a spectrum centered at the carrier frequency <IMG
|
|
WIDTH="19" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img464.png"
|
|
ALT="$\omega_c$">, with
|
|
sidebands at both even and odd multiples of the modulation frequency <IMG
|
|
WIDTH="25" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img463.png"
|
|
ALT="$\omega_m$">,
|
|
contributed respectively by the sine and cosine waveshaping terms above.
|
|
The index of modulation <IMG
|
|
WIDTH="11" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
|
SRC="img4.png"
|
|
ALT="$a$">, as it changes, controls the relative strength of
|
|
the various partials. The partials themselves are situated at the frequencies
|
|
<BR><P></P>
|
|
<DIV ALIGN="CENTER">
|
|
<!-- MATH
|
|
\begin{displaymath}
|
|
\omega_c + m \omega_m
|
|
\end{displaymath}
|
|
-->
|
|
|
|
<IMG
|
|
WIDTH="71" HEIGHT="26" BORDER="0"
|
|
SRC="img479.png"
|
|
ALT="\begin{displaymath}
|
|
\omega_c + m \omega_m
|
|
\end{displaymath}">
|
|
</DIV>
|
|
<BR CLEAR="ALL">
|
|
<P></P>
|
|
where
|
|
<BR><P></P>
|
|
<DIV ALIGN="CENTER">
|
|
<!-- MATH
|
|
\begin{displaymath}
|
|
m = \ldots -2, -1, 0, 1, 2, \ldots
|
|
\end{displaymath}
|
|
-->
|
|
|
|
<IMG
|
|
WIDTH="178" HEIGHT="27" BORDER="0"
|
|
SRC="img480.png"
|
|
ALT="\begin{displaymath}
|
|
m = \ldots -2, -1, 0, 1, 2, \ldots
|
|
\end{displaymath}">
|
|
</DIV>
|
|
<BR CLEAR="ALL">
|
|
<P></P>
|
|
As with any situation where two periodic signals are multiplied, if there is
|
|
some common supermultiple of the two periods, the resulting product will repeat
|
|
at that longer period. So if the two periods are <IMG
|
|
WIDTH="21" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
|
|
SRC="img481.png"
|
|
ALT="$k \tau$"> and <IMG
|
|
WIDTH="26" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
|
SRC="img482.png"
|
|
ALT="$m \tau$">, where
|
|
<IMG
|
|
WIDTH="12" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
|
|
SRC="img58.png"
|
|
ALT="$k$"> and <IMG
|
|
WIDTH="17" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
|
SRC="img111.png"
|
|
ALT="$m$"> are relatively prime, they both repeat after a time interval of
|
|
<IMG
|
|
WIDTH="35" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
|
|
SRC="img483.png"
|
|
ALT="$km\tau$">. In other words, if the two have frequencies which are both multiples
|
|
of some common frequency, so that <!-- MATH
|
|
$\omega_m=k\omega$
|
|
-->
|
|
<IMG
|
|
WIDTH="65" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img484.png"
|
|
ALT="$\omega_m=k\omega$"> and <!-- MATH
|
|
$\omega_c=m\omega$
|
|
-->
|
|
<IMG
|
|
WIDTH="65" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img485.png"
|
|
ALT="$\omega_c=m\omega$">,
|
|
again with <IMG
|
|
WIDTH="12" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
|
|
SRC="img58.png"
|
|
ALT="$k$"> and <IMG
|
|
WIDTH="17" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
|
SRC="img111.png"
|
|
ALT="$m$"> relatively prime, the result will repeat at a frequency
|
|
of the common submultiple <IMG
|
|
WIDTH="14" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
|
SRC="img27.png"
|
|
ALT="$\omega $">. On the other hand, if no common
|
|
submultiple <IMG
|
|
WIDTH="14" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
|
SRC="img27.png"
|
|
ALT="$\omega $"> can be found, or if the only submultiples are lower than
|
|
any discernible pitch, then the result will be inharmonic.
|
|
|
|
<P>
|
|
Much more about FM can be found in textbooks [<A
|
|
HREF="node202.html#r-moore90">Moo90</A>, p. 316]
|
|
[<A
|
|
HREF="node202.html#r-dodge85">DJ85</A>, pp.115-139] [<A
|
|
HREF="node202.html#r-boulanger00">Bou00</A>] and the research literature.
|
|
Some of the
|
|
possibilities are shown in the following examples.
|
|
|
|
<P>
|
|
<HR>
|
|
<!--Navigation Panel-->
|
|
<A ID="tex2html1725"
|
|
HREF="node80.html">
|
|
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
|
|
SRC="next.png"></A>
|
|
<A ID="tex2html1719"
|
|
HREF="node75.html">
|
|
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
|
|
SRC="up.png"></A>
|
|
<A ID="tex2html1713"
|
|
HREF="node78.html">
|
|
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
|
|
SRC="prev.png"></A>
|
|
<A ID="tex2html1721"
|
|
HREF="node4.html">
|
|
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
|
|
SRC="contents.png"></A>
|
|
<A ID="tex2html1723"
|
|
HREF="node201.html">
|
|
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
|
|
SRC="index.png"></A>
|
|
<BR>
|
|
<B> Next:</B> <A ID="tex2html1726"
|
|
HREF="node80.html">Examples</A>
|
|
<B> Up:</B> <A ID="tex2html1720"
|
|
HREF="node75.html">Modulation</A>
|
|
<B> Previous:</B> <A ID="tex2html1714"
|
|
HREF="node78.html">Waveshaping</A>
|
|
<B> <A ID="tex2html1722"
|
|
HREF="node4.html">Contents</A></B>
|
|
<B> <A ID="tex2html1724"
|
|
HREF="node201.html">Index</A></B>
|
|
<!--End of Navigation Panel-->
|
|
<ADDRESS>
|
|
Miller Puckette
|
|
2006-12-30
|
|
</ADDRESS>
|
|
</BODY>
|
|
</HTML>
|