346 lines
8.4 KiB
HTML
346 lines
8.4 KiB
HTML
<!DOCTYPE html>
|
|
|
|
<!--Converted with LaTeX2HTML 2002-2-1 (1.71)
|
|
original version by: Nikos Drakos, CBLU, University of Leeds
|
|
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
|
|
* with significant contributions from:
|
|
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
|
|
<HTML>
|
|
<HEAD>
|
|
|
|
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
|
|
|
|
|
<TITLE>Sawtooth wave</TITLE>
|
|
<META NAME="description" CONTENT="Sawtooth wave">
|
|
<META NAME="keywords" CONTENT="book">
|
|
<META NAME="resource-type" CONTENT="document">
|
|
<META NAME="distribution" CONTENT="global">
|
|
|
|
<META NAME="Generator" CONTENT="LaTeX2HTML v2002-2-1">
|
|
<META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">
|
|
|
|
<LINK REL="STYLESHEET" HREF="book.css">
|
|
|
|
<LINK REL="next" HREF="node190.html">
|
|
<LINK REL="previous" HREF="node188.html">
|
|
<LINK REL="up" HREF="node188.html">
|
|
<LINK REL="next" HREF="node190.html">
|
|
</HEAD>
|
|
|
|
<BODY >
|
|
<!--Navigation Panel-->
|
|
<A ID="tex2html3400"
|
|
HREF="node190.html">
|
|
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
|
|
SRC="next.png"></A>
|
|
<A ID="tex2html3394"
|
|
HREF="node188.html">
|
|
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
|
|
SRC="up.png"></A>
|
|
<A ID="tex2html3388"
|
|
HREF="node188.html">
|
|
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
|
|
SRC="prev.png"></A>
|
|
<A ID="tex2html3396"
|
|
HREF="node4.html">
|
|
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
|
|
SRC="contents.png"></A>
|
|
<A ID="tex2html3398"
|
|
HREF="node201.html">
|
|
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
|
|
SRC="index.png"></A>
|
|
<BR>
|
|
<B> Next:</B> <A ID="tex2html3401"
|
|
HREF="node190.html">Parabolic wave</A>
|
|
<B> Up:</B> <A ID="tex2html3395"
|
|
HREF="node188.html">Fourier series of the</A>
|
|
<B> Previous:</B> <A ID="tex2html3389"
|
|
HREF="node188.html">Fourier series of the</A>
|
|
<B> <A ID="tex2html3397"
|
|
HREF="node4.html">Contents</A></B>
|
|
<B> <A ID="tex2html3399"
|
|
HREF="node201.html">Index</A></B>
|
|
<BR>
|
|
<BR>
|
|
<!--End of Navigation Panel-->
|
|
|
|
<H2><A ID="SECTION001431000000000000000">
|
|
Sawtooth wave</A>
|
|
</H2>
|
|
First we apply this to the sawtooth wave <IMG
|
|
WIDTH="29" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img1311.png"
|
|
ALT="$s[n]$">. For <IMG
|
|
WIDTH="77" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img1312.png"
|
|
ALT="$0 \le n < N$"> we have:
|
|
<BR><P></P>
|
|
<DIV ALIGN="CENTER">
|
|
<!-- MATH
|
|
\begin{displaymath}
|
|
s[n] - s[n-1] = -{1 \over N} +
|
|
\left \{
|
|
\begin{array}{ll}
|
|
{1} & {n = 0} \\
|
|
0 & \mbox{otherwise}
|
|
\end{array}
|
|
\right .
|
|
\end{displaymath}
|
|
-->
|
|
|
|
<IMG
|
|
WIDTH="279" HEIGHT="45" BORDER="0"
|
|
SRC="img1313.png"
|
|
ALT="\begin{displaymath}
|
|
s[n] - s[n-1] = -{1 \over N} +
|
|
\left \{
|
|
\begin{array}{ll}
|
|
{1} & {n = 0} \\
|
|
0 & \mbox{otherwise}
|
|
\end{array} \right .
|
|
\end{displaymath}">
|
|
</DIV>
|
|
<BR CLEAR="ALL">
|
|
<P></P>
|
|
Ignoring the constant offset of <IMG
|
|
WIDTH="30" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img1314.png"
|
|
ALT="$-{1 \over N}$">, this gives an
|
|
<A ID="14349"></A><I>impulse</I>,
|
|
zero everywhere except one sample per cycle. The summation in
|
|
the Fourier transform only has one term, and we get:
|
|
<BR><P></P>
|
|
<DIV ALIGN="CENTER">
|
|
<!-- MATH
|
|
\begin{displaymath}
|
|
{\cal FT}\{ s[n] - s[n-1] \} (k) = 1 , \; k \neq 0, \; -N < k < N\
|
|
\end{displaymath}
|
|
-->
|
|
|
|
<IMG
|
|
WIDTH="344" HEIGHT="28" BORDER="0"
|
|
SRC="img1315.png"
|
|
ALT="\begin{displaymath}
|
|
{\cal FT}\{ s[n] - s[n-1] \} (k) = 1 , \; k \neq 0, \; -N < k < N\
|
|
\end{displaymath}">
|
|
</DIV>
|
|
<BR CLEAR="ALL">
|
|
<P></P>
|
|
We then apply the difference formula backward to get:
|
|
<BR><P></P>
|
|
<DIV ALIGN="CENTER">
|
|
<!-- MATH
|
|
\begin{displaymath}
|
|
{\cal FT}\{ s[n] \} (k) \approx {1 \over {i \omega k}}
|
|
= {{-iN} \over {2 \pi k}}
|
|
\end{displaymath}
|
|
-->
|
|
|
|
<IMG
|
|
WIDTH="194" HEIGHT="39" BORDER="0"
|
|
SRC="img1316.png"
|
|
ALT="\begin{displaymath}
|
|
{\cal FT}\{ s[n] \} (k) \approx {1 \over {i \omega k}}
|
|
= {{-iN} \over {2 \pi k}}
|
|
\end{displaymath}">
|
|
</DIV>
|
|
<BR CLEAR="ALL">
|
|
<P></P>
|
|
valid for integer values of <IMG
|
|
WIDTH="12" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
|
|
SRC="img58.png"
|
|
ALT="$k$">, small compared to <IMG
|
|
WIDTH="18" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
|
|
SRC="img3.png"
|
|
ALT="$N$">, but with <IMG
|
|
WIDTH="41" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img1317.png"
|
|
ALT="$k \neq 0$"> .
|
|
(To get the second
|
|
form of the expression we plugged in <!-- MATH
|
|
$\omega = 2 \pi / N$
|
|
-->
|
|
<IMG
|
|
WIDTH="74" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img1047.png"
|
|
ALT="$\omega=2\pi/N$"> and <IMG
|
|
WIDTH="63" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img1318.png"
|
|
ALT="$1/i = -i$">.)
|
|
|
|
<P>
|
|
This analysis doesn't give us the DC component <!-- MATH
|
|
${\cal FT}\{ s[n] \}(0)$
|
|
-->
|
|
<IMG
|
|
WIDTH="91" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img1319.png"
|
|
ALT="${\cal FT}\{ s[n] \}(0)$">,
|
|
because we would have had to divide by <IMG
|
|
WIDTH="41" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
|
|
SRC="img1092.png"
|
|
ALT="$k=0$">. Instead, we can evaluate the DC
|
|
term directly as the sum of all the points of the waveform: it's approximately
|
|
zero by symmetry.
|
|
|
|
<P>
|
|
To get a Fourier series in terms of familiar real-valued sine and cosine functions,
|
|
we combine corresponding terms for negative and positive values of <IMG
|
|
WIDTH="12" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
|
|
SRC="img58.png"
|
|
ALT="$k$">. The
|
|
first harmonic (<IMG
|
|
WIDTH="53" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img1320.png"
|
|
ALT="$k = \pm 1$">) is:
|
|
<BR><P></P>
|
|
<DIV ALIGN="CENTER">
|
|
<!-- MATH
|
|
\begin{displaymath}
|
|
{1 \over N}\left [
|
|
{\cal FT}\{ s[n] \} (1) \cdot {U^n} +
|
|
{\cal FT}\{ s[n] \} (-1) \cdot {U^{-n}}
|
|
\right ]
|
|
\end{displaymath}
|
|
-->
|
|
|
|
<IMG
|
|
WIDTH="313" HEIGHT="38" BORDER="0"
|
|
SRC="img1321.png"
|
|
ALT="\begin{displaymath}
|
|
{1 \over N}\left [
|
|
{\cal FT}\{ s[n] \} (1) \cdot {U^n} +
|
|
{\cal FT}\{ s[n] \} (-1) \cdot {U^{-n}}
|
|
\right ]
|
|
\end{displaymath}">
|
|
</DIV>
|
|
<BR CLEAR="ALL">
|
|
<P></P>
|
|
<BR><P></P>
|
|
<DIV ALIGN="CENTER">
|
|
<!-- MATH
|
|
\begin{displaymath}
|
|
\approx {{-i} \over {2 \pi}} \left [ U^n - U^{-n} \right ]
|
|
\end{displaymath}
|
|
-->
|
|
|
|
<IMG
|
|
WIDTH="122" HEIGHT="39" BORDER="0"
|
|
SRC="img1322.png"
|
|
ALT="\begin{displaymath}
|
|
\approx {{-i} \over {2 \pi}} \left [ U^n - U^{-n} \right ]
|
|
\end{displaymath}">
|
|
</DIV>
|
|
<BR CLEAR="ALL">
|
|
<P></P>
|
|
<BR><P></P>
|
|
<DIV ALIGN="CENTER">
|
|
<!-- MATH
|
|
\begin{displaymath}
|
|
= {{\sin ( \omega n)} \over {\pi}}
|
|
\end{displaymath}
|
|
-->
|
|
|
|
<IMG
|
|
WIDTH="69" HEIGHT="40" BORDER="0"
|
|
SRC="img1323.png"
|
|
ALT="\begin{displaymath}
|
|
= {{\sin ( \omega n)} \over {\pi}}
|
|
\end{displaymath}">
|
|
</DIV>
|
|
<BR CLEAR="ALL">
|
|
<P></P>
|
|
and similarly the <IMG
|
|
WIDTH="12" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
|
|
SRC="img58.png"
|
|
ALT="$k$">th harmonic is
|
|
<BR><P></P>
|
|
<DIV ALIGN="CENTER">
|
|
<!-- MATH
|
|
\begin{displaymath}
|
|
{{\sin ( k \omega n)} \over {k \pi}}
|
|
\end{displaymath}
|
|
-->
|
|
|
|
<IMG
|
|
WIDTH="61" HEIGHT="40" BORDER="0"
|
|
SRC="img1324.png"
|
|
ALT="\begin{displaymath}
|
|
{{\sin ( k \omega n)} \over {k \pi}}
|
|
\end{displaymath}">
|
|
</DIV>
|
|
<BR CLEAR="ALL">
|
|
<P></P>
|
|
so the entire Fourier series is:
|
|
<BR><P></P>
|
|
<DIV ALIGN="CENTER">
|
|
<!-- MATH
|
|
\begin{displaymath}
|
|
s[n] \approx {1 \over \pi} \left [
|
|
{\sin ( \omega n )}
|
|
+ {{\sin ( 2 \omega n)} \over 2}
|
|
+ {{\sin ( 3 \omega n)} \over 3}
|
|
+ \cdots
|
|
\right ]
|
|
\end{displaymath}
|
|
-->
|
|
|
|
<IMG
|
|
WIDTH="332" HEIGHT="45" BORDER="0"
|
|
SRC="img1325.png"
|
|
ALT="\begin{displaymath}
|
|
s[n] \approx {1 \over \pi} \left [
|
|
{\sin ( \omega n )}
|
|
+ ...
|
|
...\over 2}
|
|
+ {{\sin ( 3 \omega n)} \over 3}
|
|
+ \cdots
|
|
\right ]
|
|
\end{displaymath}">
|
|
</DIV>
|
|
<BR CLEAR="ALL">
|
|
<P></P>
|
|
|
|
<P>
|
|
<HR>
|
|
<!--Navigation Panel-->
|
|
<A ID="tex2html3400"
|
|
HREF="node190.html">
|
|
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
|
|
SRC="next.png"></A>
|
|
<A ID="tex2html3394"
|
|
HREF="node188.html">
|
|
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
|
|
SRC="up.png"></A>
|
|
<A ID="tex2html3388"
|
|
HREF="node188.html">
|
|
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
|
|
SRC="prev.png"></A>
|
|
<A ID="tex2html3396"
|
|
HREF="node4.html">
|
|
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
|
|
SRC="contents.png"></A>
|
|
<A ID="tex2html3398"
|
|
HREF="node201.html">
|
|
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
|
|
SRC="index.png"></A>
|
|
<BR>
|
|
<B> Next:</B> <A ID="tex2html3401"
|
|
HREF="node190.html">Parabolic wave</A>
|
|
<B> Up:</B> <A ID="tex2html3395"
|
|
HREF="node188.html">Fourier series of the</A>
|
|
<B> Previous:</B> <A ID="tex2html3389"
|
|
HREF="node188.html">Fourier series of the</A>
|
|
<B> <A ID="tex2html3397"
|
|
HREF="node4.html">Contents</A></B>
|
|
<B> <A ID="tex2html3399"
|
|
HREF="node201.html">Index</A></B>
|
|
<!--End of Navigation Panel-->
|
|
<ADDRESS>
|
|
Miller Puckette
|
|
2006-12-30
|
|
</ADDRESS>
|
|
</BODY>
|
|
</HTML>
|