572 lines
15 KiB
HTML
572 lines
15 KiB
HTML
<!DOCTYPE html>
|
|
|
|
<!--Converted with LaTeX2HTML 2002-2-1 (1.71)
|
|
original version by: Nikos Drakos, CBLU, University of Leeds
|
|
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
|
|
* with significant contributions from:
|
|
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
|
|
<HTML>
|
|
<HEAD>
|
|
|
|
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
|
|
|
|
|
<TITLE>Phase</TITLE>
|
|
<META NAME="description" CONTENT="Phase">
|
|
<META NAME="keywords" CONTENT="book">
|
|
<META NAME="resource-type" CONTENT="document">
|
|
<META NAME="distribution" CONTENT="global">
|
|
|
|
<META NAME="Generator" CONTENT="LaTeX2HTML v2002-2-1">
|
|
<META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">
|
|
|
|
<LINK REL="STYLESHEET" HREF="book.css">
|
|
|
|
<LINK REL="next" HREF="node177.html">
|
|
<LINK REL="previous" HREF="node172.html">
|
|
<LINK REL="up" HREF="node163.html">
|
|
<LINK REL="next" HREF="node176.html">
|
|
</HEAD>
|
|
|
|
<BODY >
|
|
<!--Navigation Panel-->
|
|
<A ID="tex2html3186"
|
|
HREF="node176.html">
|
|
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
|
|
SRC="next.png"></A>
|
|
<A ID="tex2html3180"
|
|
HREF="node163.html">
|
|
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
|
|
SRC="up.png"></A>
|
|
<A ID="tex2html3174"
|
|
HREF="node174.html">
|
|
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
|
|
SRC="prev.png"></A>
|
|
<A ID="tex2html3182"
|
|
HREF="node4.html">
|
|
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
|
|
SRC="contents.png"></A>
|
|
<A ID="tex2html3184"
|
|
HREF="node201.html">
|
|
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
|
|
SRC="index.png"></A>
|
|
<BR>
|
|
<B> Next:</B> <A ID="tex2html3187"
|
|
HREF="node176.html">Phase relationships between channels</A>
|
|
<B> Up:</B> <A ID="tex2html3181"
|
|
HREF="node163.html">Fourier analysis and resynthesis</A>
|
|
<B> Previous:</B> <A ID="tex2html3175"
|
|
HREF="node174.html">Timbre stamping (classical vocoder)</A>
|
|
<B> <A ID="tex2html3183"
|
|
HREF="node4.html">Contents</A></B>
|
|
<B> <A ID="tex2html3185"
|
|
HREF="node201.html">Index</A></B>
|
|
<BR>
|
|
<BR>
|
|
<!--End of Navigation Panel-->
|
|
|
|
<H1><A ID="SECTION001350000000000000000"></A>
|
|
<A ID="sect9.phase"></A>
|
|
<BR>
|
|
Phase
|
|
</H1>
|
|
|
|
<P>
|
|
So far we have operated on signals by altering the magnitudes of their
|
|
windowed Fourier transforms, but leaving phases intact. The magnitudes
|
|
encode the spectral envelope of the sound. The phases, on the other hand,
|
|
encode frequency and time, in the sense that phase change from
|
|
one window to a different one accumulates, over time, according to frequency.
|
|
To make a transformation that allows independent control over frequency and
|
|
time requires analyzing and reconstructing the phase.
|
|
|
|
<P>
|
|
|
|
<DIV ALIGN="CENTER"><A ID="fig09.10"></A><A ID="12612"></A>
|
|
<TABLE>
|
|
<CAPTION ALIGN="BOTTOM"><STRONG>Figure 9.10:</STRONG>
|
|
Phase in windowed Fourier analysis: (a) a complex sinusoid analyzed
|
|
on three successive windows; (b) the result for a single channel (k=3), for
|
|
the three windows.</CAPTION>
|
|
<TR><TD><IMG
|
|
WIDTH="447" HEIGHT="623" BORDER="0"
|
|
SRC="img1176.png"
|
|
ALT="\begin{figure}\psfig{file=figs/fig09.10.ps}\end{figure}"></TD></TR>
|
|
</TABLE>
|
|
</DIV>
|
|
|
|
<P>
|
|
In the analysis/synthesis examples of the previous section, the phase of the
|
|
output is copied directly from the phase of the input. This is appropriate
|
|
when the output signal corresponds in time with the input signal. Sometimes time
|
|
modifications are desired, for instance to do time stretching or contraction.
|
|
Alternatively the output phase might depend on more than one input, for instance
|
|
to morph between one sound and another.
|
|
|
|
<P>
|
|
Figure <A HREF="#fig09.10">9.10</A> shows how the phase of the Fourier transform
|
|
changes from window to window, given a complex sinusoid as input. The
|
|
sinusoid's frequency is <!-- MATH
|
|
$\alpha = 3\omega$
|
|
-->
|
|
<IMG
|
|
WIDTH="53" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
|
SRC="img1177.png"
|
|
ALT="$\alpha = 3\omega$">, so that the peak in the Fourier transform
|
|
is centered at <IMG
|
|
WIDTH="41" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
|
|
SRC="img1178.png"
|
|
ALT="$k=3$">. If the initial phase is <IMG
|
|
WIDTH="13" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img77.png"
|
|
ALT="$\phi$">, then the neighboring
|
|
phases can be filled in as:
|
|
<BR><P></P>
|
|
<DIV ALIGN="CENTER">
|
|
<!-- MATH
|
|
\begin{displaymath}
|
|
\begin{array}{lll}
|
|
{\angle S[0, 2] = \phi + \pi} &
|
|
{\angle S[0, 3] = \phi} &
|
|
{\angle S[0, 4] = \phi + \pi}\\
|
|
{\angle S[1, 2] = \phi + H\alpha + \pi } &
|
|
{\angle S[1, 3] = \phi + H\alpha} &
|
|
{\angle S[1, 4] = \phi + H\alpha + \pi}\\
|
|
{\angle S[2, 2] = \phi + 2H\alpha + \pi } &
|
|
{\angle S[2, 3] = \phi + 2H\alpha} &
|
|
{\angle S[2, 4] = \phi + 2H\alpha + \pi}\\
|
|
\end{array}
|
|
\end{displaymath}
|
|
-->
|
|
|
|
<IMG
|
|
WIDTH="494" HEIGHT="64" BORDER="0"
|
|
SRC="img1179.png"
|
|
ALT="\begin{displaymath}
|
|
\begin{array}{lll}
|
|
{\angle S[0, 2] = \phi + \pi} &
|
|
{\angl...
|
|
...ha} &
|
|
{\angle S[2, 4] = \phi + 2H\alpha + \pi}\\
|
|
\end{array}\end{displaymath}">
|
|
</DIV>
|
|
<BR CLEAR="ALL">
|
|
<P></P>
|
|
This gives an excellent way of estimating the frequency <IMG
|
|
WIDTH="13" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
|
SRC="img7.png"
|
|
ALT="$\alpha $">: pick any
|
|
channel whose amplitude is dominated by the sinusoid and subtract two
|
|
successive phase to get <IMG
|
|
WIDTH="28" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
|
|
SRC="img1180.png"
|
|
ALT="$H\alpha$">:
|
|
<BR><P></P>
|
|
<DIV ALIGN="CENTER">
|
|
<!-- MATH
|
|
\begin{displaymath}
|
|
H \alpha = \angle S[1, 3] - \angle S[0, 3]
|
|
\end{displaymath}
|
|
-->
|
|
|
|
<IMG
|
|
WIDTH="169" HEIGHT="28" BORDER="0"
|
|
SRC="img1181.png"
|
|
ALT="\begin{displaymath}
|
|
H \alpha = \angle S[1, 3] - \angle S[0, 3]
|
|
\end{displaymath}">
|
|
</DIV>
|
|
<BR CLEAR="ALL">
|
|
<P></P>
|
|
<BR><P></P>
|
|
<DIV ALIGN="CENTER">
|
|
<!-- MATH
|
|
\begin{displaymath}
|
|
\alpha = {{\angle S[1, 3] - \angle S[0, 3] + 2 p \pi} \over H}
|
|
\end{displaymath}
|
|
-->
|
|
|
|
<IMG
|
|
WIDTH="203" HEIGHT="40" BORDER="0"
|
|
SRC="img1182.png"
|
|
ALT="\begin{displaymath}
|
|
\alpha = {{\angle S[1, 3] - \angle S[0, 3] + 2 p \pi} \over H}
|
|
\end{displaymath}">
|
|
</DIV>
|
|
<BR CLEAR="ALL">
|
|
<P></P>
|
|
where <IMG
|
|
WIDTH="11" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img57.png"
|
|
ALT="$p$"> is an integer. There are <IMG
|
|
WIDTH="18" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
|
|
SRC="img25.png"
|
|
ALT="$H$"> possible frequencies, spaced by
|
|
<IMG
|
|
WIDTH="43" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img1183.png"
|
|
ALT="$2\pi/H$">. If we are using an overlap of 4, that is, <IMG
|
|
WIDTH="68" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img1154.png"
|
|
ALT="$H=N/4$">, the frequencies
|
|
are spaced by <!-- MATH
|
|
$8\pi/N = 4 \omega$
|
|
-->
|
|
<IMG
|
|
WIDTH="82" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img1184.png"
|
|
ALT="$8\pi/N = 4 \omega$">. Happily, this is the width of the main lobe
|
|
for the Hann window, so no more than one possible value of <IMG
|
|
WIDTH="13" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
|
SRC="img7.png"
|
|
ALT="$\alpha $"> can explain
|
|
any measured phase difference within the main lobe of a peak. The correct value
|
|
of <IMG
|
|
WIDTH="11" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img57.png"
|
|
ALT="$p$"> to choose is that which gives a frequency closest to the nominal
|
|
frequency of the channel, <IMG
|
|
WIDTH="22" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
|
|
SRC="img1145.png"
|
|
ALT="$k\omega$">.
|
|
|
|
<P>
|
|
When computing phases for synthesizing a new or modified signal, we want to
|
|
maintain the appropriate phase relationships between successive resynthesis
|
|
windows, and also, simultaneously, between adjacent channels. These two sets of
|
|
relationships are not always compatible, however. We will make it our first
|
|
obligation to honor the relations between successive resynthesis windows, and
|
|
worry about phase relationships between channels afterward.
|
|
|
|
<P>
|
|
Suppose we want to construct the <IMG
|
|
WIDTH="17" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
|
SRC="img111.png"
|
|
ALT="$m$">th spectrum <IMG
|
|
WIDTH="52" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img64.png"
|
|
ALT="$S[m, k]$"> for resynthesis
|
|
(having already constructed the previous one, number <IMG
|
|
WIDTH="44" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img1185.png"
|
|
ALT="$m-1$">). Suppose
|
|
we wish the phase relationships between windows <IMG
|
|
WIDTH="44" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img1185.png"
|
|
ALT="$m-1$"> and <IMG
|
|
WIDTH="17" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
|
SRC="img111.png"
|
|
ALT="$m$"> to be those of
|
|
a signal <IMG
|
|
WIDTH="31" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img80.png"
|
|
ALT="$x[n]$">, but that the phases of window number <IMG
|
|
WIDTH="44" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img1185.png"
|
|
ALT="$m-1$"> might have come
|
|
from somewhere else and can't be assumed to be in line with our wishes.
|
|
|
|
<P>
|
|
|
|
<DIV ALIGN="CENTER"><A ID="fig09.11"></A><A ID="12631"></A>
|
|
<TABLE>
|
|
<CAPTION ALIGN="BOTTOM"><STRONG>Figure 9.11:</STRONG>
|
|
Propagating phases in resynthesis. Each phase, such as that of
|
|
<IMG
|
|
WIDTH="52" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img64.png"
|
|
ALT="$S[m, k]$"> here, depends on the previous output phase and the difference of the
|
|
input phases.</CAPTION>
|
|
<TR><TD><IMG
|
|
WIDTH="459" HEIGHT="405" BORDER="0"
|
|
SRC="img1186.png"
|
|
ALT="\begin{figure}\psfig{file=figs/fig09.11.ps}\end{figure}"></TD></TR>
|
|
</TABLE>
|
|
</DIV>
|
|
|
|
<P>
|
|
|
|
<DIV ALIGN="CENTER"><A ID="fig09.12"></A><A ID="12636"></A>
|
|
<TABLE>
|
|
<CAPTION ALIGN="BOTTOM"><STRONG>Figure 9.12:</STRONG>
|
|
Phases of one channel of the analysis windows and two successive
|
|
resynthesis windows.</CAPTION>
|
|
<TR><TD><IMG
|
|
WIDTH="355" HEIGHT="244" BORDER="0"
|
|
SRC="img1187.png"
|
|
ALT="\begin{figure}\psfig{file=figs/fig09.12.ps}\end{figure}"></TD></TR>
|
|
</TABLE>
|
|
</DIV>
|
|
|
|
<P>
|
|
To find out how much the phase of each channel should differ from the previous
|
|
one, we do two analyses of the signal <IMG
|
|
WIDTH="31" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img80.png"
|
|
ALT="$x[n]$">, separated by the same hop size
|
|
<IMG
|
|
WIDTH="18" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
|
|
SRC="img25.png"
|
|
ALT="$H$"> that we're using for resynthesis:
|
|
<BR><P></P>
|
|
<DIV ALIGN="CENTER">
|
|
<!-- MATH
|
|
\begin{displaymath}
|
|
T[k] = {\cal FT}(W(n)X[n]) (k)
|
|
\end{displaymath}
|
|
-->
|
|
|
|
<IMG
|
|
WIDTH="180" HEIGHT="28" BORDER="0"
|
|
SRC="img1188.png"
|
|
ALT="\begin{displaymath}
|
|
T[k] = {\cal FT}(W(n)X[n]) (k)
|
|
\end{displaymath}">
|
|
</DIV>
|
|
<BR CLEAR="ALL">
|
|
<P></P>
|
|
<BR><P></P>
|
|
<DIV ALIGN="CENTER">
|
|
<!-- MATH
|
|
\begin{displaymath}
|
|
T'[k] = {\cal FT}(W(n)X[n+H]) (k)
|
|
\end{displaymath}
|
|
-->
|
|
|
|
<IMG
|
|
WIDTH="219" HEIGHT="28" BORDER="0"
|
|
SRC="img1189.png"
|
|
ALT="\begin{displaymath}
|
|
T'[k] = {\cal FT}(W(n)X[n+H]) (k)
|
|
\end{displaymath}">
|
|
</DIV>
|
|
<BR CLEAR="ALL">
|
|
<P></P>
|
|
Figure <A HREF="#fig09.11">9.11</A> shows the process of phase accumulation, in which the
|
|
output phases each depend on the previous output phase and the phase difference
|
|
for two windowed analyses of the input. Figure <A HREF="#fig09.12">9.12</A> illustrates the
|
|
phase relationship in the complex plane.
|
|
The phase of the new output <IMG
|
|
WIDTH="52" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img64.png"
|
|
ALT="$S[m, k]$"> should be that of the previous one plus the
|
|
difference between the phases of the two analyses:
|
|
<BR><P></P>
|
|
<DIV ALIGN="CENTER">
|
|
<!-- MATH
|
|
\begin{displaymath}
|
|
\angle S[m, k] = \angle S[m-1, k] +
|
|
\left ( \angle T'[k] - \angle T[k] \right )
|
|
\end{displaymath}
|
|
-->
|
|
|
|
<IMG
|
|
WIDTH="299" HEIGHT="28" BORDER="0"
|
|
SRC="img1190.png"
|
|
ALT="\begin{displaymath}
|
|
\angle S[m, k] = \angle S[m-1, k] +
|
|
\left ( \angle T'[k] - \angle T[k] \right )
|
|
\end{displaymath}">
|
|
</DIV>
|
|
<BR CLEAR="ALL">
|
|
<P></P>
|
|
<BR><P></P>
|
|
<DIV ALIGN="CENTER">
|
|
<!-- MATH
|
|
\begin{displaymath}
|
|
= \angle \left (
|
|
{{S[m-1, k] T'[k]}
|
|
\over
|
|
{T[k]}}
|
|
\right )
|
|
\end{displaymath}
|
|
-->
|
|
|
|
<IMG
|
|
WIDTH="163" HEIGHT="45" BORDER="0"
|
|
SRC="img1191.png"
|
|
ALT="\begin{displaymath}
|
|
= \angle \left (
|
|
{{S[m-1, k] T'[k]}
|
|
\over
|
|
{T[k]}}
|
|
\right )
|
|
\end{displaymath}">
|
|
</DIV>
|
|
<BR CLEAR="ALL">
|
|
<P></P>
|
|
Here we used the fact that multiplying or dividing two complex numbers gives
|
|
the sum or difference of their arguments.
|
|
|
|
<P>
|
|
If the desired magnitude is a real number <IMG
|
|
WIDTH="11" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
|
SRC="img4.png"
|
|
ALT="$a$">, then we should set <IMG
|
|
WIDTH="52" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img64.png"
|
|
ALT="$S[m, k]$">
|
|
to:
|
|
<BR><P></P>
|
|
<DIV ALIGN="CENTER">
|
|
<!-- MATH
|
|
\begin{displaymath}
|
|
S[m, k] \; = \;
|
|
a
|
|
\; \cdot \;
|
|
{
|
|
{ \left |
|
|
{{S[m-1, k] T'[k]}
|
|
\over
|
|
{T[k]}}
|
|
\right |}
|
|
^
|
|
{-1}
|
|
}
|
|
\; \cdot \;
|
|
{
|
|
{{S[m-1, k] T'[k]}
|
|
\over
|
|
{T[k]}}
|
|
}
|
|
\end{displaymath}
|
|
-->
|
|
|
|
<IMG
|
|
WIDTH="383" HEIGHT="48" BORDER="0"
|
|
SRC="img1192.png"
|
|
ALT="\begin{displaymath}
|
|
S[m, k] \; = \;
|
|
a
|
|
\; \cdot \;
|
|
{
|
|
{ \left \vert
|
|
{{S[m-...
|
|
...{-1}
|
|
}
|
|
\; \cdot \;
|
|
{
|
|
{{S[m-1, k] T'[k]}
|
|
\over
|
|
{T[k]}}
|
|
}
|
|
\end{displaymath}">
|
|
</DIV>
|
|
<BR CLEAR="ALL">
|
|
<P></P>
|
|
The magnitudes of the second and third terms cancel out, so that the magnitude
|
|
of <IMG
|
|
WIDTH="52" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img64.png"
|
|
ALT="$S[m, k]$"> reduces to <IMG
|
|
WIDTH="11" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
|
SRC="img4.png"
|
|
ALT="$a$">; the first two terms are real numbers so the
|
|
argument is controlled by the last term.
|
|
|
|
<P>
|
|
If we want to end up with the magnitude from the spectrum <IMG
|
|
WIDTH="15" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
|
|
SRC="img557.png"
|
|
ALT="$T$"> as well, we can
|
|
set <IMG
|
|
WIDTH="75" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img1193.png"
|
|
ALT="$a = \vert T'[k]\vert$"> and simplify:
|
|
<BR><P></P>
|
|
<DIV ALIGN="CENTER">
|
|
<!-- MATH
|
|
\begin{displaymath}
|
|
S[m, k] \; = \;
|
|
{
|
|
{ \left |
|
|
{{S[m-1, k]}
|
|
\over
|
|
{T[k]}}
|
|
\right |}
|
|
^
|
|
{-1}
|
|
}
|
|
\; \cdot \;
|
|
{
|
|
{{S[m-1, k] T'[k]}
|
|
\over
|
|
{T[k]}}
|
|
}
|
|
\end{displaymath}
|
|
-->
|
|
|
|
<IMG
|
|
WIDTH="321" HEIGHT="48" BORDER="0"
|
|
SRC="img1194.png"
|
|
ALT="\begin{displaymath}
|
|
S[m, k] \; = \;
|
|
{
|
|
{ \left \vert
|
|
{{S[m-1, k]}
|
|
\over
|
|
{...
|
|
...{-1}
|
|
}
|
|
\; \cdot \;
|
|
{
|
|
{{S[m-1, k] T'[k]}
|
|
\over
|
|
{T[k]}}
|
|
}
|
|
\end{displaymath}">
|
|
</DIV>
|
|
<BR CLEAR="ALL">
|
|
<P></P>
|
|
|
|
<P>
|
|
<BR><HR>
|
|
<!--Table of Child-Links-->
|
|
<A ID="CHILD_LINKS"><STRONG>Subsections</STRONG></A>
|
|
|
|
<UL>
|
|
<LI><A ID="tex2html3188"
|
|
HREF="node176.html">Phase relationships between channels</A>
|
|
</UL>
|
|
<!--End of Table of Child-Links-->
|
|
<HR>
|
|
<!--Navigation Panel-->
|
|
<A ID="tex2html3186"
|
|
HREF="node176.html">
|
|
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
|
|
SRC="next.png"></A>
|
|
<A ID="tex2html3180"
|
|
HREF="node163.html">
|
|
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
|
|
SRC="up.png"></A>
|
|
<A ID="tex2html3174"
|
|
HREF="node174.html">
|
|
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
|
|
SRC="prev.png"></A>
|
|
<A ID="tex2html3182"
|
|
HREF="node4.html">
|
|
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
|
|
SRC="contents.png"></A>
|
|
<A ID="tex2html3184"
|
|
HREF="node201.html">
|
|
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
|
|
SRC="index.png"></A>
|
|
<BR>
|
|
<B> Next:</B> <A ID="tex2html3187"
|
|
HREF="node176.html">Phase relationships between channels</A>
|
|
<B> Up:</B> <A ID="tex2html3181"
|
|
HREF="node163.html">Fourier analysis and resynthesis</A>
|
|
<B> Previous:</B> <A ID="tex2html3175"
|
|
HREF="node174.html">Timbre stamping (classical vocoder)</A>
|
|
<B> <A ID="tex2html3183"
|
|
HREF="node4.html">Contents</A></B>
|
|
<B> <A ID="tex2html3185"
|
|
HREF="node201.html">Index</A></B>
|
|
<!--End of Navigation Panel-->
|
|
<ADDRESS>
|
|
Miller Puckette
|
|
2006-12-30
|
|
</ADDRESS>
|
|
</BODY>
|
|
</HTML>
|