miller-book/node86.html

240 lines
6.6 KiB
HTML

<!DOCTYPE html>
<!--Converted with LaTeX2HTML 2002-2-1 (1.71)
original version by: Nikos Drakos, CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<TITLE>Sinusoidal waveshaping: evenness and oddness</TITLE>
<META NAME="description" CONTENT="Sinusoidal waveshaping: evenness and oddness">
<META NAME="keywords" CONTENT="book">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META NAME="Generator" CONTENT="LaTeX2HTML v2002-2-1">
<META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">
<LINK REL="STYLESHEET" HREF="book.css">
<LINK REL="next" HREF="node87.html">
<LINK REL="previous" HREF="node85.html">
<LINK REL="up" HREF="node80.html">
<LINK REL="next" HREF="node87.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html1830"
HREF="node87.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next.png"></A>
<A NAME="tex2html1824"
HREF="node80.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up.png"></A>
<A NAME="tex2html1818"
HREF="node85.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="prev.png"></A>
<A NAME="tex2html1826"
HREF="node4.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents.png"></A>
<A NAME="tex2html1828"
HREF="node201.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html1831"
HREF="node87.html">Phase modulation and FM</A>
<B> Up:</B> <A NAME="tex2html1825"
HREF="node80.html">Examples</A>
<B> Previous:</B> <A NAME="tex2html1819"
HREF="node85.html">Waveshaping using an exponential</A>
&nbsp; <B> <A NAME="tex2html1827"
HREF="node4.html">Contents</A></B>
&nbsp; <B> <A NAME="tex2html1829"
HREF="node201.html">Index</A></B>
<BR>
<BR>
<!--End of Navigation Panel-->
<H2><A NAME="SECTION00956000000000000000">
Sinusoidal waveshaping: evenness and oddness</A>
</H2>
<A NAME="sect5.bessel"></A>
<P>
Another interesting class of waveshaping transfer functions is the sinusoids:
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
f(x) = \cos(x + \phi)
\end{displaymath}
-->
<IMG
WIDTH="122" HEIGHT="28" BORDER="0"
SRC="img526.png"
ALT="\begin{displaymath}
f(x) = \cos(x + \phi)
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
which include the cosine and sine functions (got by choosing <IMG
WIDTH="42" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="img162.png"
ALT="$\phi=0$"> and
<IMG
WIDTH="72" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img527.png"
ALT="$\phi=-\pi/2$">, respectively). These functions, one being even and the
other odd, give rise to even and odd harmonic spectra, which turn out to be:
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
\cos(a \cos(\omega n)) = {J_0}(a)
- 2 {J_2}(a) \cos(2 \omega n)
+ 2 {J_4}(a) \cos(4 \omega n)
- 2 {J_6}(a) \cos(6 \omega n) \pm \cdots
\end{displaymath}
-->
<IMG
WIDTH="553" HEIGHT="28" BORDER="0"
SRC="img528.png"
ALT="\begin{displaymath}
\cos(a \cos(\omega n)) = {J_0}(a)
- 2 {J_2}(a) \cos(2 \om...
...a) \cos(4 \omega n)
- 2 {J_6}(a) \cos(6 \omega n) \pm \cdots
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
\sin(a \cos(\omega n)) =
2 {J_1}(a) \cos(\omega n)
- 2{J_3}(a) \cos(3 \omega n)
+ 2{J_5}(a) \cos(5 \omega n) \mp \cdots
\end{displaymath}
-->
<IMG
WIDTH="512" HEIGHT="28" BORDER="0"
SRC="img529.png"
ALT="\begin{displaymath}
\sin(a \cos(\omega n)) =
2 {J_1}(a) \cos(\omega n)
- 2{J_3}(a) \cos(3 \omega n)
+ 2{J_5}(a) \cos(5 \omega n) \mp \cdots
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
The functions <IMG
WIDTH="40" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img530.png"
ALT="${J_k}(a)$"> are the
<A NAME="5889"></A><I>Bessel functions</I>
of the first kind, which
engineers sometimes use to solve problems about vibrations or heat flow on
discs. For other values of <IMG
WIDTH="13" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="img77.png"
ALT="$\phi$">, we can expand the expression for <IMG
WIDTH="13" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="img112.png"
ALT="$f$">:
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
f(x) = \cos(x) \cos(\phi) - \sin(x) \sin(\phi)
\end{displaymath}
-->
<IMG
WIDTH="243" HEIGHT="28" BORDER="0"
SRC="img531.png"
ALT="\begin{displaymath}
f(x) = \cos(x) \cos(\phi) - \sin(x) \sin(\phi)
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
so the result is a mix between the even and the odd harmonics, with <IMG
WIDTH="13" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="img77.png"
ALT="$\phi$">
controlling the relative amplitudes of the two. This is demonstrated in Patch
E07.evenodd.pd, shown in Figure <A HREF="#fig05.14">5.14</A>.
<P>
<DIV ALIGN="CENTER"><A NAME="fig05.14"></A><A NAME="5894"></A>
<TABLE>
<CAPTION ALIGN="BOTTOM"><STRONG>Figure 5.14:</STRONG>
Using an additive offset to a cosine transfer function to alter the
symmetry between even and odd. With no offset the symmetry is even. For odd symmetry, a quarter cycle is added
to the phase. Smaller offsets give a mixture of even and odd.</CAPTION>
<TR><TD><IMG
WIDTH="234" HEIGHT="171" BORDER="0"
SRC="img532.png"
ALT="\begin{figure}\psfig{file=figs/fig05.14.ps}\end{figure}"></TD></TR>
</TABLE>
</DIV>
<P>
<HR>
<!--Navigation Panel-->
<A NAME="tex2html1830"
HREF="node87.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next.png"></A>
<A NAME="tex2html1824"
HREF="node80.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up.png"></A>
<A NAME="tex2html1818"
HREF="node85.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="prev.png"></A>
<A NAME="tex2html1826"
HREF="node4.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents.png"></A>
<A NAME="tex2html1828"
HREF="node201.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html1831"
HREF="node87.html">Phase modulation and FM</A>
<B> Up:</B> <A NAME="tex2html1825"
HREF="node80.html">Examples</A>
<B> Previous:</B> <A NAME="tex2html1819"
HREF="node85.html">Waveshaping using an exponential</A>
&nbsp; <B> <A NAME="tex2html1827"
HREF="node4.html">Contents</A></B>
&nbsp; <B> <A NAME="tex2html1829"
HREF="node201.html">Index</A></B>
<!--End of Navigation Panel-->
<ADDRESS>
Miller Puckette
2006-12-30
</ADDRESS>
</BODY>
</HTML>