336 lines
		
	
	
		
			9.6 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
			
		
		
	
	
			336 lines
		
	
	
		
			9.6 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
| <!DOCTYPE html>
 | |
| 
 | |
| <!--Converted with LaTeX2HTML 2002-2-1 (1.71)
 | |
| original version by:  Nikos Drakos, CBLU, University of Leeds
 | |
| * revised and updated by:  Marcus Hennecke, Ross Moore, Herb Swan
 | |
| * with significant contributions from:
 | |
|   Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
 | |
| <HTML>
 | |
| <HEAD>
 | |
| 
 | |
| <meta name="viewport" content="width=device-width, initial-scale=1.0">
 | |
| 
 | |
| 
 | |
| <TITLE>Waveshaping using an exponential function</TITLE>
 | |
| <META NAME="description" CONTENT="Waveshaping using an exponential function">
 | |
| <META NAME="keywords" CONTENT="book">
 | |
| <META NAME="resource-type" CONTENT="document">
 | |
| <META NAME="distribution" CONTENT="global">
 | |
| 
 | |
| <META NAME="Generator" CONTENT="LaTeX2HTML v2002-2-1">
 | |
| <META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">
 | |
| 
 | |
| <LINK REL="STYLESHEET" HREF="book.css">
 | |
| 
 | |
| <LINK REL="next" HREF="node86.html">
 | |
| <LINK REL="previous" HREF="node84.html">
 | |
| <LINK REL="up" HREF="node80.html">
 | |
| <LINK REL="next" HREF="node86.html">
 | |
| </HEAD>
 | |
| 
 | |
| <BODY >
 | |
| <!--Navigation Panel-->
 | |
| <A ID="tex2html1816"
 | |
|   HREF="node86.html">
 | |
| <IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
 | |
|  SRC="next.png"></A> 
 | |
| <A ID="tex2html1810"
 | |
|   HREF="node80.html">
 | |
| <IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
 | |
|  SRC="up.png"></A> 
 | |
| <A ID="tex2html1804"
 | |
|   HREF="node84.html">
 | |
| <IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
 | |
|  SRC="prev.png"></A> 
 | |
| <A ID="tex2html1812"
 | |
|   HREF="node4.html">
 | |
| <IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
 | |
|  SRC="contents.png"></A> 
 | |
| <A ID="tex2html1814"
 | |
|   HREF="node201.html">
 | |
| <IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
 | |
|  SRC="index.png"></A> 
 | |
| <BR>
 | |
| <B> Next:</B> <A ID="tex2html1817"
 | |
|   HREF="node86.html">Sinusoidal waveshaping: evenness and</A>
 | |
| <B> Up:</B> <A ID="tex2html1811"
 | |
|   HREF="node80.html">Examples</A>
 | |
| <B> Previous:</B> <A ID="tex2html1805"
 | |
|   HREF="node84.html">Waveshaping using Chebychev polynomials</A>
 | |
|    <B>  <A ID="tex2html1813"
 | |
|   HREF="node4.html">Contents</A></B> 
 | |
|    <B>  <A ID="tex2html1815"
 | |
|   HREF="node201.html">Index</A></B> 
 | |
| <BR>
 | |
| <BR>
 | |
| <!--End of Navigation Panel-->
 | |
| 
 | |
| <H2><A ID="SECTION00955000000000000000">
 | |
| Waveshaping using an exponential function</A>
 | |
| </H2>
 | |
| <A ID="sect5.example.expon"></A>
 | |
| <P>
 | |
| We return again to the spectra computed on Page <A HREF="node78.html#eq-waveshaping"><IMG  ALIGN="BOTTOM" BORDER="1" ALT="[*]"
 | |
|  SRC="crossref.png"></A>,
 | |
| corresponding to waveshaping functions of the form <IMG
 | |
|  WIDTH="72" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
 | |
|  SRC="img504.png"
 | |
|  ALT="$f(x) = x^k$">.  We note
 | |
| with pleasure that not only are they all in phase (so that they can
 | |
| be superposed with easily predictable results) but also that the spectra
 | |
| spread out as <IMG
 | |
|  WIDTH="12" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
 | |
|  SRC="img58.png"
 | |
|  ALT="$k$"> increases.  Also, in a series
 | |
| of the form,
 | |
| <BR><P></P>
 | |
| <DIV ALIGN="CENTER">
 | |
| <!-- MATH
 | |
|  \begin{displaymath}
 | |
| f(x) = {f_0} + {f_1} x + {f_2} {x^2} + \cdots,
 | |
| \end{displaymath}
 | |
|  -->
 | |
| 
 | |
| <IMG
 | |
|  WIDTH="205" HEIGHT="28" BORDER="0"
 | |
|  SRC="img505.png"
 | |
|  ALT="\begin{displaymath}
 | |
| f(x) = {f_0} + {f_1} x + {f_2} {x^2} + \cdots,
 | |
| \end{displaymath}">
 | |
| </DIV>
 | |
| <BR CLEAR="ALL">
 | |
| <P></P>
 | |
| a higher index of modulation will lend more relative weight to the higher
 | |
| power terms in the expansion; as we saw seen earlier, if the index of
 | |
| modulation is <IMG
 | |
|  WIDTH="11" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
 | |
|  SRC="img4.png"
 | |
|  ALT="$a$">, the various <IMG
 | |
|  WIDTH="20" HEIGHT="17" ALIGN="BOTTOM" BORDER="0"
 | |
|  SRC="img506.png"
 | |
|  ALT="$x^k$"> terms are multiplied by <IMG
 | |
|  WIDTH="18" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 | |
|  SRC="img507.png"
 | |
|  ALT="$f_0$">,
 | |
| <IMG
 | |
|  WIDTH="26" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 | |
|  SRC="img508.png"
 | |
|  ALT="$af_1$">, <IMG
 | |
|  WIDTH="34" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 | |
|  SRC="img509.png"
 | |
|  ALT="${a^2}{f_2}$">, and so on.  
 | |
| 
 | |
| <P>
 | |
| Now suppose we wish to arrange for different terms in the above expansion
 | |
| to dominate the result in a predictable way as a function of the index <IMG
 | |
|  WIDTH="11" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
 | |
|  SRC="img4.png"
 | |
|  ALT="$a$">.
 | |
| To choose the simplest possible example, suppose we wish <IMG
 | |
|  WIDTH="18" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 | |
|  SRC="img507.png"
 | |
|  ALT="$f_0$"> to be the largest
 | |
| term for <IMG
 | |
|  WIDTH="70" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
 | |
|  SRC="img510.png"
 | |
|  ALT="$0<a<1$">, then for it to be overtaken by the more quickly growing
 | |
| <IMG
 | |
|  WIDTH="26" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 | |
|  SRC="img508.png"
 | |
|  ALT="$af_1$"> term for <IMG
 | |
|  WIDTH="70" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
 | |
|  SRC="img511.png"
 | |
|  ALT="$1<a<2$">, which is then overtaken by the <IMG
 | |
|  WIDTH="34" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 | |
|  SRC="img509.png"
 | |
|  ALT="${a^2}{f_2}$"> term for
 | |
| <IMG
 | |
|  WIDTH="70" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
 | |
|  SRC="img512.png"
 | |
|  ALT="$2<a<3$"> and so on, so that each <IMG
 | |
|  WIDTH="13" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
 | |
|  SRC="img75.png"
 | |
|  ALT="$n$">th term takes over at index <IMG
 | |
|  WIDTH="13" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
 | |
|  SRC="img75.png"
 | |
|  ALT="$n$">.
 | |
| To make this happen we just require that
 | |
| <BR><P></P>
 | |
| <DIV ALIGN="CENTER">
 | |
| <!-- MATH
 | |
|  \begin{displaymath}
 | |
| {f_1} = {f_0} , 2 {f_2} = {f_1}, 3 {f_3} = {f_2} , \ldots
 | |
| \end{displaymath}
 | |
|  -->
 | |
| 
 | |
| <IMG
 | |
|  WIDTH="207" HEIGHT="27" BORDER="0"
 | |
|  SRC="img513.png"
 | |
|  ALT="\begin{displaymath}
 | |
| {f_1} = {f_0} , 2 {f_2} = {f_1}, 3 {f_3} = {f_2} , \ldots
 | |
| \end{displaymath}">
 | |
| </DIV>
 | |
| <BR CLEAR="ALL">
 | |
| <P></P>
 | |
| and so choosing <IMG
 | |
|  WIDTH="47" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 | |
|  SRC="img514.png"
 | |
|  ALT="${f_0}=0$">, we get <IMG
 | |
|  WIDTH="47" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 | |
|  SRC="img515.png"
 | |
|  ALT="${f_1}=1$">, <IMG
 | |
|  WIDTH="63" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 | |
|  SRC="img516.png"
 | |
|  ALT="${f_2}=1/2$">, <IMG
 | |
|  WIDTH="63" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 | |
|  SRC="img517.png"
 | |
|  ALT="${f_3}=1/6$">, and in
 | |
| general,
 | |
| <BR><P></P>
 | |
| <DIV ALIGN="CENTER">
 | |
| <!-- MATH
 | |
|  \begin{displaymath}
 | |
| {f_k} = {1 \over {1 \cdot 2 \cdot 3 \cdot ... \cdot k}}
 | |
| \end{displaymath}
 | |
|  -->
 | |
| 
 | |
| <IMG
 | |
|  WIDTH="129" HEIGHT="38" BORDER="0"
 | |
|  SRC="img518.png"
 | |
|  ALT="\begin{displaymath}
 | |
| {f_k} = {1 \over {1 \cdot 2 \cdot 3 \cdot ... \cdot k}}
 | |
| \end{displaymath}">
 | |
| </DIV>
 | |
| <BR CLEAR="ALL">
 | |
| <P></P>
 | |
| These happen to be the coefficients of the power series for the function
 | |
| <BR><P></P>
 | |
| <DIV ALIGN="CENTER">
 | |
| <!-- MATH
 | |
|  \begin{displaymath}
 | |
| f(x) = {e ^ x}
 | |
| \end{displaymath}
 | |
|  -->
 | |
| 
 | |
| <IMG
 | |
|  WIDTH="65" HEIGHT="28" BORDER="0"
 | |
|  SRC="img519.png"
 | |
|  ALT="\begin{displaymath}
 | |
| f(x) = {e ^ x}
 | |
| \end{displaymath}">
 | |
| </DIV>
 | |
| <BR CLEAR="ALL">
 | |
| <P></P>
 | |
| where <IMG
 | |
|  WIDTH="52" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
 | |
|  SRC="img520.png"
 | |
|  ALT="$e \approx 2.7$"> is Euler's constant.
 | |
| 
 | |
| <P>
 | |
| Before plugging in <IMG
 | |
|  WIDTH="18" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
 | |
|  SRC="img521.png"
 | |
|  ALT="$e^x$"> as a transfer function it's wise to plan how we
 | |
| will deal with signal amplitude, since <IMG
 | |
|  WIDTH="18" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
 | |
|  SRC="img521.png"
 | |
|  ALT="$e^x$"> grows quickly as
 | |
| <IMG
 | |
|  WIDTH="12" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
 | |
|  SRC="img243.png"
 | |
|  ALT="$x$"> increases.  If we're going to plug in a sinusoid of amplitude <IMG
 | |
|  WIDTH="11" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
 | |
|  SRC="img4.png"
 | |
|  ALT="$a$">, the maximum output
 | |
| will be <IMG
 | |
|  WIDTH="18" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
 | |
|  SRC="img522.png"
 | |
|  ALT="$e^a$">, occurring whenever the phase is zero.  A simple and natural
 | |
| choice is simply to divide by <IMG
 | |
|  WIDTH="18" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
 | |
|  SRC="img522.png"
 | |
|  ALT="$e^a$"> to reduce the peak to one, giving:
 | |
| <BR><P></P>
 | |
| <DIV ALIGN="CENTER">
 | |
| <!-- MATH
 | |
|  \begin{displaymath}
 | |
| f(a \cos(\omega n)) = 
 | |
|     {{{e^{a \cos(\omega n)}}} \over {e^a}} = {e^{a (\cos(\omega n) - 1)}}
 | |
| \end{displaymath}
 | |
|  -->
 | |
| 
 | |
| <IMG
 | |
|  WIDTH="275" HEIGHT="42" BORDER="0"
 | |
|  SRC="img523.png"
 | |
|  ALT="\begin{displaymath}
 | |
| f(a \cos(\omega n)) =
 | |
| {{{e^{a \cos(\omega n)}}} \over {e^a}} = {e^{a (\cos(\omega n) - 1)}}
 | |
| \end{displaymath}">
 | |
| </DIV>
 | |
| <BR CLEAR="ALL">
 | |
| <P></P>
 | |
| This is realized in Example E06.exponential.pd.  Resulting spectra for
 | |
| <IMG
 | |
|  WIDTH="28" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
 | |
|  SRC="img524.png"
 | |
|  ALT="$a=$"> 0, 4, and 16 are shown in Figure <A HREF="#fig05.13">5.13</A>.  As the waveshaping index
 | |
| rises, progressively less energy is present in the fundamental; the energy
 | |
| is increasingly spread over the partials.
 | |
| 
 | |
| <P>
 | |
| 
 | |
| <DIV ALIGN="CENTER"><A ID="fig05.13"></A><A ID="5876"></A>
 | |
| <TABLE>
 | |
| <CAPTION ALIGN="BOTTOM"><STRONG>Figure 5.13:</STRONG>
 | |
| Spectra of waveshaping output using an exponential transfer function.
 | |
| Indices of modulation of 0, 4, and 16 are shown; note the different vertical
 | |
| scales.</CAPTION>
 | |
| <TR><TD><IMG
 | |
|  WIDTH="421" HEIGHT="466" BORDER="0"
 | |
|  SRC="img525.png"
 | |
|  ALT="\begin{figure}\psfig{file=figs/fig05.13.ps}\end{figure}"></TD></TR>
 | |
| </TABLE>
 | |
| </DIV>
 | |
| 
 | |
| <P>
 | |
| <HR>
 | |
| <!--Navigation Panel-->
 | |
| <A ID="tex2html1816"
 | |
|   HREF="node86.html">
 | |
| <IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
 | |
|  SRC="next.png"></A> 
 | |
| <A ID="tex2html1810"
 | |
|   HREF="node80.html">
 | |
| <IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
 | |
|  SRC="up.png"></A> 
 | |
| <A ID="tex2html1804"
 | |
|   HREF="node84.html">
 | |
| <IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
 | |
|  SRC="prev.png"></A> 
 | |
| <A ID="tex2html1812"
 | |
|   HREF="node4.html">
 | |
| <IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
 | |
|  SRC="contents.png"></A> 
 | |
| <A ID="tex2html1814"
 | |
|   HREF="node201.html">
 | |
| <IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
 | |
|  SRC="index.png"></A> 
 | |
| <BR>
 | |
| <B> Next:</B> <A ID="tex2html1817"
 | |
|   HREF="node86.html">Sinusoidal waveshaping: evenness and</A>
 | |
| <B> Up:</B> <A ID="tex2html1811"
 | |
|   HREF="node80.html">Examples</A>
 | |
| <B> Previous:</B> <A ID="tex2html1805"
 | |
|   HREF="node84.html">Waveshaping using Chebychev polynomials</A>
 | |
|    <B>  <A ID="tex2html1813"
 | |
|   HREF="node4.html">Contents</A></B> 
 | |
|    <B>  <A ID="tex2html1815"
 | |
|   HREF="node201.html">Index</A></B> 
 | |
| <!--End of Navigation Panel-->
 | |
| <ADDRESS>
 | |
| Miller Puckette
 | |
| 2006-12-30
 | |
| </ADDRESS>
 | |
| </BODY>
 | |
| </HTML>
 |