548 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
			
		
		
	
	
			548 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
<!DOCTYPE html>
 | 
						|
 | 
						|
<!--Converted with LaTeX2HTML 2002-2-1 (1.71)
 | 
						|
original version by:  Nikos Drakos, CBLU, University of Leeds
 | 
						|
* revised and updated by:  Marcus Hennecke, Ross Moore, Herb Swan
 | 
						|
* with significant contributions from:
 | 
						|
  Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
 | 
						|
<HTML>
 | 
						|
<HEAD>
 | 
						|
 | 
						|
<meta name="viewport" content="width=device-width, initial-scale=1.0">
 | 
						|
 | 
						|
 | 
						|
<TITLE>Fourier analysis of non-periodic signals</TITLE>
 | 
						|
<META NAME="description" CONTENT="Fourier analysis of non-periodic signals">
 | 
						|
<META NAME="keywords" CONTENT="book">
 | 
						|
<META NAME="resource-type" CONTENT="document">
 | 
						|
<META NAME="distribution" CONTENT="global">
 | 
						|
 | 
						|
<META NAME="Generator" CONTENT="LaTeX2HTML v2002-2-1">
 | 
						|
<META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">
 | 
						|
 | 
						|
<LINK REL="STYLESHEET" HREF="book.css">
 | 
						|
 | 
						|
<LINK REL="next" HREF="node172.html">
 | 
						|
<LINK REL="previous" HREF="node167.html">
 | 
						|
<LINK REL="up" HREF="node163.html">
 | 
						|
<LINK REL="next" HREF="node172.html">
 | 
						|
</HEAD>
 | 
						|
 | 
						|
<BODY >
 | 
						|
<!--Navigation Panel-->
 | 
						|
<A ID="tex2html3130"
 | 
						|
  HREF="node172.html">
 | 
						|
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
 | 
						|
 SRC="next.png"></A> 
 | 
						|
<A ID="tex2html3124"
 | 
						|
  HREF="node163.html">
 | 
						|
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
 | 
						|
 SRC="up.png"></A> 
 | 
						|
<A ID="tex2html3118"
 | 
						|
  HREF="node170.html">
 | 
						|
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
 | 
						|
 SRC="prev.png"></A> 
 | 
						|
<A ID="tex2html3126"
 | 
						|
  HREF="node4.html">
 | 
						|
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
 | 
						|
 SRC="contents.png"></A> 
 | 
						|
<A ID="tex2html3128"
 | 
						|
  HREF="node201.html">
 | 
						|
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
 | 
						|
 SRC="index.png"></A> 
 | 
						|
<BR>
 | 
						|
<B> Next:</B> <A ID="tex2html3131"
 | 
						|
  HREF="node172.html">Fourier analysis and reconstruction</A>
 | 
						|
<B> Up:</B> <A ID="tex2html3125"
 | 
						|
  HREF="node163.html">Fourier analysis and resynthesis</A>
 | 
						|
<B> Previous:</B> <A ID="tex2html3119"
 | 
						|
  HREF="node170.html">Fourier transform of a</A>
 | 
						|
   <B>  <A ID="tex2html3127"
 | 
						|
  HREF="node4.html">Contents</A></B> 
 | 
						|
   <B>  <A ID="tex2html3129"
 | 
						|
  HREF="node201.html">Index</A></B> 
 | 
						|
<BR>
 | 
						|
<BR>
 | 
						|
<!--End of Navigation Panel-->
 | 
						|
 | 
						|
<H1><A ID="SECTION001330000000000000000">
 | 
						|
Fourier analysis of non-periodic signals</A>
 | 
						|
</H1>
 | 
						|
 | 
						|
<P>
 | 
						|
Most signals aren't periodic, and even a periodic one might have an unknown
 | 
						|
period.  So we should be prepared to do Fourier analysis on signals without
 | 
						|
making the comforting assumption that the signal to analyze repeats at a fixed
 | 
						|
period <IMG
 | 
						|
 WIDTH="18" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
 | 
						|
 SRC="img3.png"
 | 
						|
 ALT="$N$">. Of course, we can simply take <IMG
 | 
						|
 WIDTH="18" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
 | 
						|
 SRC="img3.png"
 | 
						|
 ALT="$N$"> samples of the signal and
 | 
						|
<I>make</I> it periodic; this is essentially what we did in the previous
 | 
						|
section, in which a pure sinusoid gave us the complicated Fourier transform of
 | 
						|
Figure <A HREF="node170.html#fig09.03">9.3</A> (part b).
 | 
						|
 | 
						|
<P>
 | 
						|
However, it would be better to get a result in which the response to a pure
 | 
						|
sinusoid were better localized around the corresponding value of <IMG
 | 
						|
 WIDTH="12" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
 | 
						|
 SRC="img58.png"
 | 
						|
 ALT="$k$">.  We
 | 
						|
can accomplish this using the enveloping technique first introduced in Figure
 | 
						|
<A HREF="node29.html#fig02.07">2.7</A> (Page <A HREF="node29.html#fig02.07"><IMG  ALIGN="BOTTOM" BORDER="1" ALT="[*]"
 | 
						|
 SRC="crossref.png"></A>).  Applying this technique to Fourier
 | 
						|
analysis will not only improve our analyses, but will also shed new light on
 | 
						|
the enveloping looping sampler of Chapter 2.
 | 
						|
 | 
						|
<P>
 | 
						|
Given a signal <IMG
 | 
						|
 WIDTH="36" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 | 
						|
 SRC="img669.png"
 | 
						|
 ALT="$X[n]$">, periodic or not, defined on the points from
 | 
						|
<IMG
 | 
						|
 WIDTH="11" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
 | 
						|
 SRC="img179.png"
 | 
						|
 ALT="$0$"> to <IMG
 | 
						|
 WIDTH="45" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 | 
						|
 SRC="img171.png"
 | 
						|
 ALT="$N-1$">,
 | 
						|
the technique is to envelope the signal before doing the Fourier analysis.
 | 
						|
The envelope shape is known as a
 | 
						|
<A ID="12499"></A><I>window function</I>.
 | 
						|
Given a window function <IMG
 | 
						|
 WIDTH="33" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 | 
						|
 SRC="img1123.png"
 | 
						|
 ALT="$w[n]$">, the
 | 
						|
<A ID="12501"></A><I>windowed Fourier transform</I>
 | 
						|
is:
 | 
						|
<BR><P></P>
 | 
						|
<DIV ALIGN="CENTER">
 | 
						|
<!-- MATH
 | 
						|
 \begin{displaymath}
 | 
						|
{\cal FT} \left \{ w[n] X[n] \right \} (k)
 | 
						|
\end{displaymath}
 | 
						|
 -->
 | 
						|
 | 
						|
<IMG
 | 
						|
 WIDTH="130" HEIGHT="28" BORDER="0"
 | 
						|
 SRC="img1124.png"
 | 
						|
 ALT="\begin{displaymath}
 | 
						|
{\cal FT} \left \{ w[n] X[n] \right \} (k)
 | 
						|
\end{displaymath}">
 | 
						|
</DIV>
 | 
						|
<BR CLEAR="ALL">
 | 
						|
<P></P>
 | 
						|
Much ink has been spilled over the design of suitable window functions for
 | 
						|
particular situations, but here we will consider the simplest one, named the
 | 
						|
<A ID="12504"></A><A ID="12505"></A><I>Hann</I>
 | 
						|
window function (the name is sometimes corrupted to "Hanning" in DSP circles).
 | 
						|
The Hann window is:
 | 
						|
<BR><P></P>
 | 
						|
<DIV ALIGN="CENTER">
 | 
						|
<!-- MATH
 | 
						|
 \begin{displaymath}
 | 
						|
w[n] = {1\over 2} - {1\over 2} \cos(2\pi n / N)
 | 
						|
\end{displaymath}
 | 
						|
 -->
 | 
						|
 | 
						|
<IMG
 | 
						|
 WIDTH="178" HEIGHT="38" BORDER="0"
 | 
						|
 SRC="img1125.png"
 | 
						|
 ALT="\begin{displaymath}
 | 
						|
w[n] = {1\over 2} - {1\over 2} \cos(2\pi n / N)
 | 
						|
\end{displaymath}">
 | 
						|
</DIV>
 | 
						|
<BR CLEAR="ALL">
 | 
						|
<P></P>
 | 
						|
It is easy to analyze the effect of multiplying a signal by the Hann window
 | 
						|
before taking the Fourier transform, because the Hann window can be written
 | 
						|
as a sum of three complex exponentials:
 | 
						|
<BR><P></P>
 | 
						|
<DIV ALIGN="CENTER">
 | 
						|
<!-- MATH
 | 
						|
 \begin{displaymath}
 | 
						|
w[n] = {1\over 2} - {1\over 4}  {U^n} - {1\over 4}  {U^{-n}}
 | 
						|
\end{displaymath}
 | 
						|
 -->
 | 
						|
 | 
						|
<IMG
 | 
						|
 WIDTH="177" HEIGHT="38" BORDER="0"
 | 
						|
 SRC="img1126.png"
 | 
						|
 ALT="\begin{displaymath}
 | 
						|
w[n] = {1\over 2} - {1\over 4} {U^n} - {1\over 4} {U^{-n}}
 | 
						|
\end{displaymath}">
 | 
						|
</DIV>
 | 
						|
<BR CLEAR="ALL">
 | 
						|
<P></P>
 | 
						|
where as before, <IMG
 | 
						|
 WIDTH="16" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
 | 
						|
 SRC="img1048.png"
 | 
						|
 ALT="$U$"> is the unit-magnitude complex number with argument
 | 
						|
<IMG
 | 
						|
 WIDTH="42" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 | 
						|
 SRC="img184.png"
 | 
						|
 ALT="$2\pi/N$">.
 | 
						|
We can now calculate the windowed Fourier transform of a
 | 
						|
sinusoid <IMG
 | 
						|
 WIDTH="24" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
 | 
						|
 SRC="img653.png"
 | 
						|
 ALT="$Z^n$"> with angular frequency <IMG
 | 
						|
 WIDTH="13" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
 | 
						|
 SRC="img7.png"
 | 
						|
 ALT="$\alpha $"> as before.  The phases
 | 
						|
come out messy and we'll replace them with simplified approximations:
 | 
						|
<BR><P></P>
 | 
						|
<DIV ALIGN="CENTER">
 | 
						|
<!-- MATH
 | 
						|
 \begin{displaymath}
 | 
						|
{\cal FT} \left \{ w[n] {Z^n} \right \} (k)
 | 
						|
\end{displaymath}
 | 
						|
 -->
 | 
						|
 | 
						|
<IMG
 | 
						|
 WIDTH="118" HEIGHT="28" BORDER="0"
 | 
						|
 SRC="img1127.png"
 | 
						|
 ALT="\begin{displaymath}
 | 
						|
{\cal FT} \left \{ w[n] {Z^n} \right \} (k)
 | 
						|
\end{displaymath}">
 | 
						|
</DIV>
 | 
						|
<BR CLEAR="ALL">
 | 
						|
<P></P>
 | 
						|
<BR><P></P>
 | 
						|
<DIV ALIGN="CENTER">
 | 
						|
<!-- MATH
 | 
						|
 \begin{displaymath}
 | 
						|
= {\cal FT} \left \{ {1\over 2} {Z^n} - {1\over 4} {(UZ)^n} 
 | 
						|
         - {1\over 4} {({U^{-1}}Z)^n}\right \} (k)
 | 
						|
\end{displaymath}
 | 
						|
 -->
 | 
						|
 | 
						|
<IMG
 | 
						|
 WIDTH="294" HEIGHT="45" BORDER="0"
 | 
						|
 SRC="img1128.png"
 | 
						|
 ALT="\begin{displaymath}
 | 
						|
= {\cal FT} \left \{ {1\over 2} {Z^n} - {1\over 4} {(UZ)^n}
 | 
						|
- {1\over 4} {({U^{-1}}Z)^n}\right \} (k)
 | 
						|
\end{displaymath}">
 | 
						|
</DIV>
 | 
						|
<BR CLEAR="ALL">
 | 
						|
<P></P>
 | 
						|
<BR><P></P>
 | 
						|
<DIV ALIGN="CENTER">
 | 
						|
<!-- MATH
 | 
						|
 \begin{displaymath}
 | 
						|
\approx \left [ \cos(\Phi(k)) + i \sin(\Phi(k))\right ]
 | 
						|
    M(k - {{\alpha } \over {\omega}})
 | 
						|
\end{displaymath}
 | 
						|
 -->
 | 
						|
 | 
						|
<IMG
 | 
						|
 WIDTH="257" HEIGHT="35" BORDER="0"
 | 
						|
 SRC="img1129.png"
 | 
						|
 ALT="\begin{displaymath}
 | 
						|
\approx \left [ \cos(\Phi(k)) + i \sin(\Phi(k))\right ]
 | 
						|
M(k - {{\alpha } \over {\omega}})
 | 
						|
\end{displaymath}">
 | 
						|
</DIV>
 | 
						|
<BR CLEAR="ALL">
 | 
						|
<P></P>
 | 
						|
where the (approximate) phase term is:
 | 
						|
<BR><P></P>
 | 
						|
<DIV ALIGN="CENTER">
 | 
						|
<!-- MATH
 | 
						|
 \begin{displaymath}
 | 
						|
\Phi(k) = - \pi \cdot (k - {{\alpha } \over {\omega}})
 | 
						|
\end{displaymath}
 | 
						|
 -->
 | 
						|
 | 
						|
<IMG
 | 
						|
 WIDTH="140" HEIGHT="35" BORDER="0"
 | 
						|
 SRC="img1130.png"
 | 
						|
 ALT="\begin{displaymath}
 | 
						|
\Phi(k) = - \pi \cdot (k - {{\alpha } \over {\omega}})
 | 
						|
\end{displaymath}">
 | 
						|
</DIV>
 | 
						|
<BR CLEAR="ALL">
 | 
						|
<P></P>
 | 
						|
and the magnitude function is:
 | 
						|
<BR><P></P>
 | 
						|
<DIV ALIGN="CENTER">
 | 
						|
<!-- MATH
 | 
						|
 \begin{displaymath}
 | 
						|
M(k) = 
 | 
						|
    {\left [ {
 | 
						|
        {1\over 2}{D_N}(k)
 | 
						|
        + {1\over 4}{D_N}(k + 1)
 | 
						|
        + {1\over 4}{D_N}(k - 1)
 | 
						|
    } \right ] }
 | 
						|
\end{displaymath}
 | 
						|
 -->
 | 
						|
 | 
						|
<IMG
 | 
						|
 WIDTH="340" HEIGHT="45" BORDER="0"
 | 
						|
 SRC="img1131.png"
 | 
						|
 ALT="\begin{displaymath}
 | 
						|
M(k) =
 | 
						|
{\left [ {
 | 
						|
{1\over 2}{D_N}(k)
 | 
						|
+ {1\over 4}{D_N}(k + 1)
 | 
						|
+ {1\over 4}{D_N}(k - 1)
 | 
						|
} \right ] }
 | 
						|
\end{displaymath}">
 | 
						|
</DIV>
 | 
						|
<BR CLEAR="ALL">
 | 
						|
<P></P>
 | 
						|
The magnitude function  <IMG
 | 
						|
 WIDTH="41" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 | 
						|
 SRC="img1132.png"
 | 
						|
 ALT="$M(k)$"> is graphed in Figure <A HREF="#fig09.05">9.5</A>.  The three
 | 
						|
Dirichlet kernel components are also shown separately.  
 | 
						|
 | 
						|
<P>
 | 
						|
 | 
						|
<DIV ALIGN="CENTER"><A ID="fig09.05"></A><A ID="12536"></A>
 | 
						|
<TABLE>
 | 
						|
<CAPTION ALIGN="BOTTOM"><STRONG>Figure 9.5:</STRONG>
 | 
						|
The magnitude M(k) of the Fourier transform of the Hann
 | 
						|
window function.  It is the sum of three (shifted and magnified) copies of the Dirichlet
 | 
						|
kernel <IMG
 | 
						|
 WIDTH="28" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 | 
						|
 SRC="img62.png"
 | 
						|
 ALT="$D_N$">, with <IMG
 | 
						|
 WIDTH="63" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
 | 
						|
 SRC="img63.png"
 | 
						|
 ALT="$N=100$">. </CAPTION>
 | 
						|
<TR><TD><IMG
 | 
						|
 WIDTH="409" HEIGHT="207" BORDER="0"
 | 
						|
 SRC="img1133.png"
 | 
						|
 ALT="\begin{figure}\psfig{file=figs/fig09.05.ps}\end{figure}"></TD></TR>
 | 
						|
</TABLE>
 | 
						|
</DIV>
 | 
						|
 | 
						|
<P>
 | 
						|
The main lobe of <IMG
 | 
						|
 WIDTH="41" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 | 
						|
 SRC="img1132.png"
 | 
						|
 ALT="$M(k)$"> is four harmonics wide, twice the width of the 
 | 
						|
main lobe of the Dirichlet kernel.  The sidelobes, on the other hand, have
 | 
						|
much smaller magnitude.  Each sidelobe of <IMG
 | 
						|
 WIDTH="41" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 | 
						|
 SRC="img1132.png"
 | 
						|
 ALT="$M(k)$"> is a sum of three sidelobes
 | 
						|
of <IMG
 | 
						|
 WIDTH="46" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 | 
						|
 SRC="img1134.png"
 | 
						|
 ALT="${D_n}(k)$">, one attenuated by <IMG
 | 
						|
 WIDTH="27" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 | 
						|
 SRC="img98.png"
 | 
						|
 ALT="$1/2$"> and the others, opposite in sign,
 | 
						|
attenuated by <IMG
 | 
						|
 WIDTH="27" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 | 
						|
 SRC="img1135.png"
 | 
						|
 ALT="$1/4$">.  They do not cancel out perfectly but they do cancel out
 | 
						|
fairly well.
 | 
						|
 | 
						|
<P>
 | 
						|
The sidelobes reach their maximum amplitudes near their midpoints, and we
 | 
						|
can estimate their amplitudes there, using the approximation:
 | 
						|
<BR><P></P>
 | 
						|
<DIV ALIGN="CENTER">
 | 
						|
<!-- MATH
 | 
						|
 \begin{displaymath}
 | 
						|
{D_N}(k) \approx {
 | 
						|
    	{N \sin(\pi k) } \over {\pi k}
 | 
						|
    }
 | 
						|
\end{displaymath}
 | 
						|
 -->
 | 
						|
 | 
						|
<IMG
 | 
						|
 WIDTH="138" HEIGHT="40" BORDER="0"
 | 
						|
 SRC="img1136.png"
 | 
						|
 ALT="\begin{displaymath}
 | 
						|
{D_N}(k) \approx {
 | 
						|
{N \sin(\pi k) } \over {\pi k}
 | 
						|
}
 | 
						|
\end{displaymath}">
 | 
						|
</DIV>
 | 
						|
<BR CLEAR="ALL">
 | 
						|
<P></P>
 | 
						|
Setting <!-- MATH
 | 
						|
 $k = 3/2, 5/2, \ldots$
 | 
						|
 -->
 | 
						|
<IMG
 | 
						|
 WIDTH="113" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 | 
						|
 SRC="img1137.png"
 | 
						|
 ALT="$k = 3/2, 5/2, \ldots$"> gives sidelobe amplitudes, relative to the
 | 
						|
peak height <IMG
 | 
						|
 WIDTH="18" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
 | 
						|
 SRC="img3.png"
 | 
						|
 ALT="$N$">, of:
 | 
						|
<BR><P></P>
 | 
						|
<DIV ALIGN="CENTER">
 | 
						|
<!-- MATH
 | 
						|
 \begin{displaymath}
 | 
						|
{2 \over {3 \pi}} \approx -13 \mathrm{dB} , \;
 | 
						|
    {2 \over {5 \pi}} \approx -18 \mathrm{dB} , \;
 | 
						|
    {2 \over {7 \pi}} \approx -21 \mathrm{dB} , \;
 | 
						|
    {2 \over {9 \pi}} \approx -23 \mathrm{dB} ,
 | 
						|
    \ldots
 | 
						|
\end{displaymath}
 | 
						|
 -->
 | 
						|
 | 
						|
<IMG
 | 
						|
 WIDTH="420" HEIGHT="38" BORDER="0"
 | 
						|
 SRC="img1138.png"
 | 
						|
 ALT="\begin{displaymath}
 | 
						|
{2 \over {3 \pi}} \approx -13 \mathrm{dB} , \;
 | 
						|
{2 \over {5...
 | 
						|
...{dB} , \;
 | 
						|
{2 \over {9 \pi}} \approx -23 \mathrm{dB} ,
 | 
						|
\ldots
 | 
						|
\end{displaymath}">
 | 
						|
</DIV>
 | 
						|
<BR CLEAR="ALL">
 | 
						|
<P></P>
 | 
						|
The sidelobes drop off progressively more slowly so that the tenth one is only
 | 
						|
attenuated about 30 dB and the 32nd one about -40 dB.  On the 
 | 
						|
other hand, the Hann window sidelobes
 | 
						|
are attenuated by:
 | 
						|
<BR><P></P>
 | 
						|
<DIV ALIGN="CENTER">
 | 
						|
<!-- MATH
 | 
						|
 \begin{displaymath}
 | 
						|
{2 \over {5 \pi}} - {1\over 2} [ {2 \over {3 \pi}} + {2 \over {7 \pi}} ]
 | 
						|
    	\approx -32.30 \mathrm{dB}
 | 
						|
\end{displaymath}
 | 
						|
 -->
 | 
						|
 | 
						|
<IMG
 | 
						|
 WIDTH="210" HEIGHT="38" BORDER="0"
 | 
						|
 SRC="img1139.png"
 | 
						|
 ALT="\begin{displaymath}
 | 
						|
{2 \over {5 \pi}} - {1\over 2} [ {2 \over {3 \pi}} + {2 \over {7 \pi}} ]
 | 
						|
\approx -32.30 \mathrm{dB}
 | 
						|
\end{displaymath}">
 | 
						|
</DIV>
 | 
						|
<BR CLEAR="ALL">
 | 
						|
<P></P>
 | 
						|
and <IMG
 | 
						|
 WIDTH="31" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
 | 
						|
 SRC="img1140.png"
 | 
						|
 ALT="$-42$">, <IMG
 | 
						|
 WIDTH="31" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
 | 
						|
 SRC="img1141.png"
 | 
						|
 ALT="$-49$">, <IMG
 | 
						|
 WIDTH="31" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
 | 
						|
 SRC="img1142.png"
 | 
						|
 ALT="$-54$">, and <IMG
 | 
						|
 WIDTH="31" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
 | 
						|
 SRC="img1143.png"
 | 
						|
 ALT="$-59$"> dB for the next four sidelobes.  
 | 
						|
 | 
						|
<P>
 | 
						|
This shows that applying a Hann window before taking the Fourier transform
 | 
						|
will better allow us to isolate sinusoidal
 | 
						|
components.  If a signal has many sinusoidal components, the sidelobes
 | 
						|
engendered by each one will interfere with the main lobe of all the others.
 | 
						|
Reducing the amplitude of the sidelobes reduces this interference.
 | 
						|
 | 
						|
<P>
 | 
						|
 | 
						|
<DIV ALIGN="CENTER"><A ID="fig09.06"></A><A ID="12558"></A>
 | 
						|
<TABLE>
 | 
						|
<CAPTION ALIGN="BOTTOM"><STRONG>Figure 9.6:</STRONG>
 | 
						|
The Hann-windowed Fourier transform of a signal with two
 | 
						|
sinusoidal components, at frequencies 5.3 and 10.6 times the fundamental,
 | 
						|
and with different complex amplitudes.</CAPTION>
 | 
						|
<TR><TD><IMG
 | 
						|
 WIDTH="482" HEIGHT="245" BORDER="0"
 | 
						|
 SRC="img1144.png"
 | 
						|
 ALT="\begin{figure}\psfig{file=figs/fig09.06.ps}\end{figure}"></TD></TR>
 | 
						|
</TABLE>
 | 
						|
</DIV>
 | 
						|
 | 
						|
<P>
 | 
						|
Figure <A HREF="#fig09.06">9.6</A> shows a Hann-windowed Fourier analysis of a signal with
 | 
						|
two sinusoidal components.   The two are separated by about 5 times the
 | 
						|
fundamental frequency <IMG
 | 
						|
 WIDTH="14" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
 | 
						|
 SRC="img27.png"
 | 
						|
 ALT="$\omega $">, and for each we see clearly the shape of the
 | 
						|
Hann window's Fourier transform.  Four points of the Fourier analysis lie
 | 
						|
within the main lobe of <IMG
 | 
						|
 WIDTH="41" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 | 
						|
 SRC="img1132.png"
 | 
						|
 ALT="$M(k)$"> corresponding to each sinusoid.  The amplitude
 | 
						|
and phase of the individual sinusoids are reflected in those of the
 | 
						|
(four-point-wide) peaks.  The four points within a peak which happen to fall at
 | 
						|
integer values <IMG
 | 
						|
 WIDTH="12" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
 | 
						|
 SRC="img58.png"
 | 
						|
 ALT="$k$"> are successively about one half cycle out of phase.
 | 
						|
 | 
						|
<P>
 | 
						|
To fully resolve the partials of a signal, we should choose an analysis size
 | 
						|
<IMG
 | 
						|
 WIDTH="18" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
 | 
						|
 SRC="img3.png"
 | 
						|
 ALT="$N$"> large enough so that <IMG
 | 
						|
 WIDTH="74" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 | 
						|
 SRC="img1047.png"
 | 
						|
 ALT="$\omega=2\pi/N$"> is no more than a quarter of the
 | 
						|
frequency separation between neighboring partials.  For a periodic signal, for
 | 
						|
example, the partials are separated by the fundamental frequency.  For the
 | 
						|
analysis to fully resolve the partials, the analysis period <IMG
 | 
						|
 WIDTH="18" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
 | 
						|
 SRC="img3.png"
 | 
						|
 ALT="$N$"> must be
 | 
						|
at least four periods of the signal.  
 | 
						|
 | 
						|
<P>
 | 
						|
In some applications it works to allow the peaks to overlap as long as the
 | 
						|
center of each peak is isolated from all the other peaks; in this case the
 | 
						|
four-period rule may be relaxed to three or even slightly less.
 | 
						|
 | 
						|
<P>
 | 
						|
<HR>
 | 
						|
<!--Navigation Panel-->
 | 
						|
<A ID="tex2html3130"
 | 
						|
  HREF="node172.html">
 | 
						|
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
 | 
						|
 SRC="next.png"></A> 
 | 
						|
<A ID="tex2html3124"
 | 
						|
  HREF="node163.html">
 | 
						|
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
 | 
						|
 SRC="up.png"></A> 
 | 
						|
<A ID="tex2html3118"
 | 
						|
  HREF="node170.html">
 | 
						|
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
 | 
						|
 SRC="prev.png"></A> 
 | 
						|
<A ID="tex2html3126"
 | 
						|
  HREF="node4.html">
 | 
						|
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
 | 
						|
 SRC="contents.png"></A> 
 | 
						|
<A ID="tex2html3128"
 | 
						|
  HREF="node201.html">
 | 
						|
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
 | 
						|
 SRC="index.png"></A> 
 | 
						|
<BR>
 | 
						|
<B> Next:</B> <A ID="tex2html3131"
 | 
						|
  HREF="node172.html">Fourier analysis and reconstruction</A>
 | 
						|
<B> Up:</B> <A ID="tex2html3125"
 | 
						|
  HREF="node163.html">Fourier analysis and resynthesis</A>
 | 
						|
<B> Previous:</B> <A ID="tex2html3119"
 | 
						|
  HREF="node170.html">Fourier transform of a</A>
 | 
						|
   <B>  <A ID="tex2html3127"
 | 
						|
  HREF="node4.html">Contents</A></B> 
 | 
						|
   <B>  <A ID="tex2html3129"
 | 
						|
  HREF="node201.html">Index</A></B> 
 | 
						|
<!--End of Navigation Panel-->
 | 
						|
<ADDRESS>
 | 
						|
Miller Puckette
 | 
						|
2006-12-30
 | 
						|
</ADDRESS>
 | 
						|
</BODY>
 | 
						|
</HTML>
 |