You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
miller-book/node150.html

237 lines
7.3 KiB

<!DOCTYPE html>
<!--Converted with LaTeX2HTML 2002-2-1 (1.71)
original version by: Nikos Drakos, CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<TITLE>All-pass filters</TITLE>
<META NAME="description" CONTENT="All-pass filters">
<META NAME="keywords" CONTENT="book">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META NAME="Generator" CONTENT="LaTeX2HTML v2002-2-1">
<META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">
<LINK REL="STYLESHEET" HREF="book.css">
<LINK REL="previous" HREF="node149.html">
<LINK REL="up" HREF="node139.html">
<LINK REL="next" HREF="node151.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A ID="tex2html2812"
HREF="node151.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next.png"></A>
<A ID="tex2html2806"
HREF="node139.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up.png"></A>
<A ID="tex2html2802"
HREF="node149.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="prev.png"></A>
<A ID="tex2html2808"
HREF="node4.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents.png"></A>
<A ID="tex2html2810"
HREF="node201.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index.png"></A>
<BR>
<B> Next:</B> <A ID="tex2html2813"
HREF="node151.html">Applications</A>
<B> Up:</B> <A ID="tex2html2807"
HREF="node139.html">Designing filters</A>
<B> Previous:</B> <A ID="tex2html2803"
HREF="node149.html">Impulse responses of recirculating</A>
&nbsp; <B> <A ID="tex2html2809"
HREF="node4.html">Contents</A></B>
&nbsp; <B> <A ID="tex2html2811"
HREF="node201.html">Index</A></B>
<BR>
<BR>
<!--End of Navigation Panel-->
<H2><A ID="SECTION0012311000000000000000">
All-pass filters</A>
</H2>
<P>
Sometimes a filter is applied to get a desired phase change, rather than to
alter the amplitudes of the frequency components of a sound. To do this
we would need a way to design a filter with a constant, unit frequency response
but which changes the phase of an incoming sinusoid in a way that depends on its
frequency. We have already seen in Chapter 7 that a delay of length <IMG
WIDTH="11" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
SRC="img28.png"
ALT="$d$">
introduces a phase change of <IMG
WIDTH="34" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="img677.png"
ALT="$- d \omega$">, at the angular frequency <IMG
WIDTH="14" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
SRC="img27.png"
ALT="$\omega $">.
Another class of filters, called
<A ID="10502"></A><I>all-pass filters</I>,
can make phase changes which are more interesting functions of <IMG
WIDTH="14" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
SRC="img27.png"
ALT="$\omega $">.
<P>
To design an all-pass filter, we start with two facts: first, an elementary
recirculating filter and an elementary non-recirculating one cancel each other
out perfectly if they have the same gain coefficient. In other words, if a
signal has been put through a one-zero filter, either real or complex, the
effect can be reversed by sequentially applying a one-pole filter, and vice
versa.
<P>
The second fact is that the elementary non-recirculating filter of the second
form has the same frequency response as that of the first form; they differ only
in phase response. So if we combine an elementary recirculating filter with
an elementary non-recirculating one of the second form, the frequency responses
cancel out (to a flat gain independent of frequency) but the phase response
is not constant.
<P>
To find the transfer function, we choose the same complex number <IMG
WIDTH="45" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="img982.png"
ALT="$P&lt;1$"> as
coefficient for both elementary filters and multiply their transfer functions:
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
H(Z) = {{
{\overline{P} - {Z^{-1}}}
} \over {
{1 - P{Z^{-1}}}
}}
\end{displaymath}
-->
<IMG
WIDTH="131" HEIGHT="44" BORDER="0"
SRC="img983.png"
ALT="\begin{displaymath}
H(Z) = {{
{\overline{P} - {Z^{-1}}}
} \over {
{1 - P{Z^{-1}}}
}}
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
The coefficient <IMG
WIDTH="15" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
SRC="img880.png"
ALT="$P$"> controls both the location of the one pole (at <IMG
WIDTH="15" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
SRC="img880.png"
ALT="$P$"> itself)
and the zero (at <!-- MATH
$1/\overline{P}$
-->
<IMG
WIDTH="31" HEIGHT="36" ALIGN="MIDDLE" BORDER="0"
SRC="img984.png"
ALT="$1/\overline{P}$">). Figure <A HREF="#fig08.23">8.23</A> shows the phase response of
the all-pass filter for four real-valued choices <IMG
WIDTH="11" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
SRC="img57.png"
ALT="$p$"> of the coefficient. At
frequencies of <IMG
WIDTH="11" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
SRC="img179.png"
ALT="$0$">, <IMG
WIDTH="13" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
SRC="img41.png"
ALT="$\pi $">, and <IMG
WIDTH="21" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
SRC="img16.png"
ALT="$2\pi $">, the phase response is just that of a
one-sample delay; but for frequencies in between, the phase response is bent
upward or downward depending on the coefficient.
<P>
<DIV ALIGN="CENTER"><A ID="fig08.23"></A><A ID="10511"></A>
<TABLE>
<CAPTION ALIGN="BOTTOM"><STRONG>Figure 8.23:</STRONG>
Phase response of all-pass filters with different pole locations <IMG
WIDTH="11" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
SRC="img57.png"
ALT="$p$">.
When the pole is located at zero, the filter reduces to a one-sample delay.</CAPTION>
<TR><TD><IMG
WIDTH="319" HEIGHT="218" BORDER="0"
SRC="img985.png"
ALT="\begin{figure}\psfig{file=figs/fig08.23.ps}\end{figure}"></TD></TR>
</TABLE>
</DIV>
<P>
Complex coefficients give similar phase response curves, but the frequencies at
which they cross the diagonal line in the figure are shifted according to the
argument of the coefficient <IMG
WIDTH="15" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
SRC="img880.png"
ALT="$P$">.
<P>
<HR>
<!--Navigation Panel-->
<A ID="tex2html2812"
HREF="node151.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next.png"></A>
<A ID="tex2html2806"
HREF="node139.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up.png"></A>
<A ID="tex2html2802"
HREF="node149.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="prev.png"></A>
<A ID="tex2html2808"
HREF="node4.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents.png"></A>
<A ID="tex2html2810"
HREF="node201.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index.png"></A>
<BR>
<B> Next:</B> <A ID="tex2html2813"
HREF="node151.html">Applications</A>
<B> Up:</B> <A ID="tex2html2807"
HREF="node139.html">Designing filters</A>
<B> Previous:</B> <A ID="tex2html2803"
HREF="node149.html">Impulse responses of recirculating</A>
&nbsp; <B> <A ID="tex2html2809"
HREF="node4.html">Contents</A></B>
&nbsp; <B> <A ID="tex2html2811"
HREF="node201.html">Index</A></B>
<!--End of Navigation Panel-->
<ADDRESS>
Miller Puckette
2006-12-30
</ADDRESS>
</BODY>
</HTML>