317 lines
		
	
	
		
			8.6 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
			
		
		
	
	
			317 lines
		
	
	
		
			8.6 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
| <!DOCTYPE html>
 | |
| 
 | |
| <!--Converted with LaTeX2HTML 2002-2-1 (1.71)
 | |
| original version by:  Nikos Drakos, CBLU, University of Leeds
 | |
| * revised and updated by:  Marcus Hennecke, Ross Moore, Herb Swan
 | |
| * with significant contributions from:
 | |
|   Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
 | |
| <HTML>
 | |
| <HEAD>
 | |
| 
 | |
| <meta name="viewport" content="width=device-width, initial-scale=1.0">
 | |
| 
 | |
| 
 | |
| <TITLE>Superposing Signals</TITLE>
 | |
| <META NAME="description" CONTENT="Superposing Signals">
 | |
| <META NAME="keywords" CONTENT="book">
 | |
| <META NAME="resource-type" CONTENT="document">
 | |
| <META NAME="distribution" CONTENT="global">
 | |
| 
 | |
| <META NAME="Generator" CONTENT="LaTeX2HTML v2002-2-1">
 | |
| <META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">
 | |
| 
 | |
| <LINK REL="STYLESHEET" HREF="book.css">
 | |
| 
 | |
| <LINK REL="next" HREF="node14.html">
 | |
| <LINK REL="previous" HREF="node12.html">
 | |
| <LINK REL="up" HREF="node7.html">
 | |
| <LINK REL="next" HREF="node14.html">
 | |
| </HEAD>
 | |
| 
 | |
| <BODY >
 | |
| <!--Navigation Panel-->
 | |
| <A ID="tex2html735"
 | |
|   HREF="node14.html">
 | |
| <IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
 | |
|  SRC="next.png"></A> 
 | |
| <A ID="tex2html729"
 | |
|   HREF="node7.html">
 | |
| <IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
 | |
|  SRC="up.png"></A> 
 | |
| <A ID="tex2html723"
 | |
|   HREF="node12.html">
 | |
| <IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
 | |
|  SRC="prev.png"></A> 
 | |
| <A ID="tex2html731"
 | |
|   HREF="node4.html">
 | |
| <IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
 | |
|  SRC="contents.png"></A> 
 | |
| <A ID="tex2html733"
 | |
|   HREF="node201.html">
 | |
| <IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
 | |
|  SRC="index.png"></A> 
 | |
| <BR>
 | |
| <B> Next:</B> <A ID="tex2html736"
 | |
|   HREF="node14.html">Periodic Signals</A>
 | |
| <B> Up:</B> <A ID="tex2html730"
 | |
|   HREF="node7.html">Sinusoids, amplitude and frequency</A>
 | |
| <B> Previous:</B> <A ID="tex2html724"
 | |
|   HREF="node12.html">Synthesizing a sinusoid</A>
 | |
|    <B>  <A ID="tex2html732"
 | |
|   HREF="node4.html">Contents</A></B> 
 | |
|    <B>  <A ID="tex2html734"
 | |
|   HREF="node201.html">Index</A></B> 
 | |
| <BR>
 | |
| <BR>
 | |
| <!--End of Navigation Panel-->
 | |
| 
 | |
| <H1><A ID="SECTION00560000000000000000"></A>
 | |
| <A ID="sect1.combine"></A>
 | |
| <BR>
 | |
| Superposing Signals
 | |
| </H1>
 | |
| 
 | |
| <P>
 | |
| If a signal <IMG
 | |
|  WIDTH="31" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 | |
|  SRC="img80.png"
 | |
|  ALT="$x[n]$"> has a peak or RMS amplitude <IMG
 | |
|  WIDTH="15" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
 | |
|  SRC="img23.png"
 | |
|  ALT="$A$"> (in some fixed window), then
 | |
| the scaled signal <IMG
 | |
|  WIDTH="51" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 | |
|  SRC="img122.png"
 | |
|  ALT="$k \cdot x[n]$"> (where <IMG
 | |
|  WIDTH="41" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 | |
|  SRC="img123.png"
 | |
|  ALT="$k \ge 0$">) has amplitude <IMG
 | |
|  WIDTH="24" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
 | |
|  SRC="img124.png"
 | |
|  ALT="$kA$">.  The
 | |
| mean power of the scaled signal changes by a factor of <IMG
 | |
|  WIDTH="19" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 | |
|  SRC="img125.png"
 | |
|  ALT="$k^2$">.  The situation gets
 | |
| more complicated when two different signals are added together; just knowing
 | |
| the amplitudes of the two does not suffice to know the amplitude of the sum.
 | |
| The two amplitude measures do at least obey triangle inequalities; for any
 | |
| two signals <IMG
 | |
|  WIDTH="31" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 | |
|  SRC="img80.png"
 | |
|  ALT="$x[n]$"> and <IMG
 | |
|  WIDTH="30" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 | |
|  SRC="img2.png"
 | |
|  ALT="$y[n]$">,
 | |
| <BR><P></P>
 | |
| <DIV ALIGN="CENTER">
 | |
| <!-- MATH
 | |
|  \begin{displaymath}
 | |
| {A_{\mathrm{peak}}} \{x[n]\} + 
 | |
|     {A_{\mathrm{peak}}} \{y[n]\} \ge
 | |
|     {A_{\mathrm{peak}}} \{x[n]+y[n]\}
 | |
| \end{displaymath}
 | |
|  -->
 | |
| 
 | |
| <IMG
 | |
|  WIDTH="332" HEIGHT="29" BORDER="0"
 | |
|  SRC="img126.png"
 | |
|  ALT="\begin{displaymath}
 | |
| {A_{\mathrm{peak}}} \{x[n]\} +
 | |
| {A_{\mathrm{peak}}} \{y[n]\} \ge
 | |
| {A_{\mathrm{peak}}} \{x[n]+y[n]\}
 | |
| \end{displaymath}">
 | |
| </DIV>
 | |
| <BR CLEAR="ALL">
 | |
| <P></P>
 | |
| <BR><P></P>
 | |
| <DIV ALIGN="CENTER">
 | |
| <!-- MATH
 | |
|  \begin{displaymath}
 | |
| {A_{\mathrm{RMS}}} \{x[n]\} + 
 | |
|     {A_{\mathrm{RMS}}} \{y[n]\} \ge 
 | |
|     {A_{\mathrm{RMS}}} \{x[n]+y[n]\}
 | |
| \end{displaymath}
 | |
|  -->
 | |
| 
 | |
| <IMG
 | |
|  WIDTH="337" HEIGHT="28" BORDER="0"
 | |
|  SRC="img127.png"
 | |
|  ALT="\begin{displaymath}
 | |
| {A_{\mathrm{RMS}}} \{x[n]\} +
 | |
| {A_{\mathrm{RMS}}} \{y[n]\} \ge
 | |
| {A_{\mathrm{RMS}}} \{x[n]+y[n]\}
 | |
| \end{displaymath}">
 | |
| </DIV>
 | |
| <BR CLEAR="ALL">
 | |
| <P></P>
 | |
| If we fix a window from <IMG
 | |
|  WIDTH="20" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
 | |
|  SRC="img86.png"
 | |
|  ALT="$M$"> to <IMG
 | |
|  WIDTH="82" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 | |
|  SRC="img128.png"
 | |
|  ALT="$N+M-1$"> as usual, we can write out the
 | |
| mean power of the sum of two signals:
 | |
| <A ID="eq-meanpowersum"></A>
 | |
| <BR><P></P>
 | |
| <DIV ALIGN="CENTER">
 | |
| <!-- MATH
 | |
|  \begin{displaymath}
 | |
| P \{x[n] + y[n]\} = P \{x[n]\} + P \{y[n]\}
 | |
|     	+ 2 \cdot {\mathrm{COV}} \{ x[n] , y[n] \}
 | |
| \end{displaymath}
 | |
|  -->
 | |
| 
 | |
| <IMG
 | |
|  WIDTH="405" HEIGHT="28" BORDER="0"
 | |
|  SRC="img129.png"
 | |
|  ALT="\begin{displaymath}
 | |
| P \{x[n] + y[n]\} = P \{x[n]\} + P \{y[n]\}
 | |
| + 2 \cdot {\mathrm{COV}} \{ x[n] , y[n] \}
 | |
| \end{displaymath}">
 | |
| </DIV>
 | |
| <BR CLEAR="ALL">
 | |
| <P></P>
 | |
| where we have introduced the
 | |
| <A ID="1161"></A><I>covariance</I> of two signals:
 | |
| <BR><P></P>
 | |
| <DIV ALIGN="CENTER">
 | |
| <!-- MATH
 | |
|  \begin{displaymath}
 | |
| {\mathrm{COV}} \{ x[n] , y[n] \} = 
 | |
| 	{
 | |
| 	    {x[M]y[M] + \cdots + x[M+N-1]y[M+N-1]}
 | |
| 	    \over
 | |
| 	    N
 | |
| 	}
 | |
| \end{displaymath}
 | |
|  -->
 | |
| 
 | |
| <IMG
 | |
|  WIDTH="454" HEIGHT="40" BORDER="0"
 | |
|  SRC="img130.png"
 | |
|  ALT="\begin{displaymath}
 | |
| {\mathrm{COV}} \{ x[n] , y[n] \} =
 | |
| {
 | |
| {x[M]y[M] + \cdots + x[M+N-1]y[M+N-1]}
 | |
| \over
 | |
| N
 | |
| }
 | |
| \end{displaymath}">
 | |
| </DIV>
 | |
| <BR CLEAR="ALL">
 | |
| <P></P>
 | |
| The covariance may be positive, zero, or negative.  Over a sufficiently large
 | |
| window, the covariance of two sinusoids with different frequencies is
 | |
| negligible compared to the mean power.  Two signals which have no covariance
 | |
| are called <I>uncorrelated</I> (the correlation is the covariance normalized
 | |
| to lie between -1 and 1).
 | |
| In general, for two uncorrelated
 | |
| signals, the power of the
 | |
| sum is the sum of the powers:
 | |
| <BR><P></P>
 | |
| <DIV ALIGN="CENTER">
 | |
| <!-- MATH
 | |
|  \begin{displaymath}
 | |
| P \{x[n] + y[n]\} = P \{x[n]\} + P \{y[n]\} , \hspace{0.1in}
 | |
|     	\mathrm{whenever}
 | |
|     	\ {\mathrm{COV}} \{ x[n] , y[n] \} = 0
 | |
| \end{displaymath}
 | |
|  -->
 | |
| 
 | |
| <IMG
 | |
|  WIDTH="483" HEIGHT="28" BORDER="0"
 | |
|  SRC="img131.png"
 | |
|  ALT="\begin{displaymath}
 | |
| P \{x[n] + y[n]\} = P \{x[n]\} + P \{y[n]\} , \hspace{0.1in}
 | |
| \mathrm{whenever}
 | |
| \ {\mathrm{COV}} \{ x[n] , y[n] \} = 0
 | |
| \end{displaymath}">
 | |
| </DIV>
 | |
| <BR CLEAR="ALL">
 | |
| <P></P>
 | |
| Put in terms of amplitude, this becomes:
 | |
| <BR><P></P>
 | |
| <DIV ALIGN="CENTER">
 | |
| <!-- MATH
 | |
|  \begin{displaymath}
 | |
| {{\left ( {A_{\mathrm{RMS}}} \{x[n]+y[n]\} \right ) } ^ 2} =
 | |
|     {{\left ( {A_{\mathrm{RMS}}} \{x[n]\} \right ) } ^ 2} + 
 | |
|     {{\left ( {A_{\mathrm{RMS}}} \{y[n]\} \right ) } ^ 2} .
 | |
| \end{displaymath}
 | |
|  -->
 | |
| 
 | |
| <IMG
 | |
|  WIDTH="398" HEIGHT="28" BORDER="0"
 | |
|  SRC="img132.png"
 | |
|  ALT="\begin{displaymath}
 | |
| {{\left ( {A_{\mathrm{RMS}}} \{x[n]+y[n]\} \right ) } ^ 2} ...
 | |
| ...2} +
 | |
| {{\left ( {A_{\mathrm{RMS}}} \{y[n]\} \right ) } ^ 2} .
 | |
| \end{displaymath}">
 | |
| </DIV>
 | |
| <BR CLEAR="ALL">
 | |
| <P></P>
 | |
| This is the familiar Pythagorean relation.  So uncorrelated signals can be
 | |
| thought of as vectors at right angles to each other; positively correlated ones
 | |
| as having an acute angle between them, and negatively correlated as having an
 | |
| obtuse angle between them.
 | |
| 
 | |
| <P>
 | |
| For example, if two uncorrelated signals both have RMS amplitude <IMG
 | |
|  WIDTH="11" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
 | |
|  SRC="img4.png"
 | |
|  ALT="$a$">,
 | |
| the sum will have RMS amplitude <IMG
 | |
|  WIDTH="33" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
 | |
|  SRC="img133.png"
 | |
|  ALT="${\sqrt 2} a$">.  On the other hand if the two
 | |
| signals happen to be equal--the most correlated possible--the sum will have
 | |
| amplitude <IMG
 | |
|  WIDTH="19" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
 | |
|  SRC="img134.png"
 | |
|  ALT="$2a$">, which is the maximum allowed by the triangle inequality.
 | |
| 
 | |
| <P>
 | |
| <HR>
 | |
| <!--Navigation Panel-->
 | |
| <A ID="tex2html735"
 | |
|   HREF="node14.html">
 | |
| <IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
 | |
|  SRC="next.png"></A> 
 | |
| <A ID="tex2html729"
 | |
|   HREF="node7.html">
 | |
| <IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
 | |
|  SRC="up.png"></A> 
 | |
| <A ID="tex2html723"
 | |
|   HREF="node12.html">
 | |
| <IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
 | |
|  SRC="prev.png"></A> 
 | |
| <A ID="tex2html731"
 | |
|   HREF="node4.html">
 | |
| <IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
 | |
|  SRC="contents.png"></A> 
 | |
| <A ID="tex2html733"
 | |
|   HREF="node201.html">
 | |
| <IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
 | |
|  SRC="index.png"></A> 
 | |
| <BR>
 | |
| <B> Next:</B> <A ID="tex2html736"
 | |
|   HREF="node14.html">Periodic Signals</A>
 | |
| <B> Up:</B> <A ID="tex2html730"
 | |
|   HREF="node7.html">Sinusoids, amplitude and frequency</A>
 | |
| <B> Previous:</B> <A ID="tex2html724"
 | |
|   HREF="node12.html">Synthesizing a sinusoid</A>
 | |
|    <B>  <A ID="tex2html732"
 | |
|   HREF="node4.html">Contents</A></B> 
 | |
|    <B>  <A ID="tex2html734"
 | |
|   HREF="node201.html">Index</A></B> 
 | |
| <!--End of Navigation Panel-->
 | |
| <ADDRESS>
 | |
| Miller Puckette
 | |
| 2006-12-30
 | |
| </ADDRESS>
 | |
| </BODY>
 | |
| </HTML>
 |