You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
miller-book/node127.html

300 lines
9.5 KiB

<!DOCTYPE html>
<!--Converted with LaTeX2HTML 2002-2-1 (1.71)
original version by: Nikos Drakos, CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<TITLE>Filters</TITLE>
<META NAME="description" CONTENT="Filters">
<META NAME="keywords" CONTENT="book">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META NAME="Generator" CONTENT="LaTeX2HTML v2002-2-1">
<META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">
<LINK REL="STYLESHEET" HREF="book.css">
<LINK REL="next" HREF="node163.html">
<LINK REL="previous" HREF="node104.html">
<LINK REL="up" HREF="book.html">
<LINK REL="next" HREF="node128.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A ID="tex2html2441"
HREF="node128.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next.png"></A>
<A ID="tex2html2435"
HREF="book.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up.png"></A>
<A ID="tex2html2429"
HREF="node126.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="prev.png"></A>
<A ID="tex2html2437"
HREF="node4.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents.png"></A>
<A ID="tex2html2439"
HREF="node201.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index.png"></A>
<BR>
<B> Next:</B> <A ID="tex2html2442"
HREF="node128.html">Taxonomy of filters</A>
<B> Up:</B> <A ID="tex2html2436"
HREF="book.html">book</A>
<B> Previous:</B> <A ID="tex2html2430"
HREF="node126.html">Exercises</A>
&nbsp; <B> <A ID="tex2html2438"
HREF="node4.html">Contents</A></B>
&nbsp; <B> <A ID="tex2html2440"
HREF="node201.html">Index</A></B>
<BR>
<BR>
<!--End of Navigation Panel-->
<H1><A ID="SECTION001200000000000000000"></A>
<A ID="chapter-filter"></A>
<BR>
Filters
</H1>
<P>
In the previous chapter we saw that a delay network can have a non-uniform
frequency response--a gain that varies as a function of
frequency. Delay networks also typically change the phase of incoming signals
variably depending on frequency. When the delay times used are very short,
the most important properties of a delay network become its frequency and
phase response. A delay network that is designed specifically for its
frequency or phase response is called a
<A ID="10048"></A><I>filter</I>.
<P>
<DIV ALIGN="CENTER"><A ID="fig08.01"></A><A ID="10052"></A>
<TABLE>
<CAPTION ALIGN="BOTTOM"><STRONG>Figure 8.1:</STRONG>
Representations of a filter: (a) in a block diagram; (b) a graph of its
frequency response.</CAPTION>
<TR><TD><IMG
WIDTH="357" HEIGHT="200" BORDER="0"
SRC="img852.png"
ALT="\begin{figure}\psfig{file=figs/fig08.01.ps}\end{figure}"></TD></TR>
</TABLE>
</DIV>
<P>
In block diagrams, filters are shown as in Figure <A HREF="#fig08.01">8.1</A> (part a). The
curve shown within the block gives a qualitative representation of the filter's
frequency response. The frequency response may vary with time, and depending
on the design of the filter, one or more controls (or additional audio inputs)
might be used to change it.
<P>
Suppose, following the procedure of Section <A HREF="node108.html#sect7.network">7.3</A>, we put
a unit-amplitude, complex-valued sinusoid with angular frequency <IMG
WIDTH="14" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
SRC="img27.png"
ALT="$\omega $"> into a filter. We
expect to get out a sinusoid of the same frequency and some amplitude, which
depends on <IMG
WIDTH="14" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
SRC="img27.png"
ALT="$\omega $">. This gives us a complex-valued function <IMG
WIDTH="40" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img853.png"
ALT="$H(\omega)$">, which is called the
<A ID="10057"></A><I>transfer function</I>
of the filter.
<P>
The frequency response is the gain as a function of the frequency
<IMG
WIDTH="14" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
SRC="img27.png"
ALT="$\omega $">. It is is equal to the magnitude of the transfer function. A
filter's frequency response is customarily graphed as in Figure
<A HREF="#fig08.01">8.1</A> (part b).
An incoming unit-amplitude sinusoid of frequency <IMG
WIDTH="14" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
SRC="img27.png"
ALT="$\omega $"> comes out
of the filter with magnitude <IMG
WIDTH="49" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img725.png"
ALT="$\vert H(\omega)\vert$">.
<P>
It is sometimes also useful to know the phase response of the filter, equal
to <!-- MATH
$\angle( H(\omega))$
-->
<IMG
WIDTH="63" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img854.png"
ALT="$\angle( H(\omega))$">. For a fixed frequency <IMG
WIDTH="14" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
SRC="img27.png"
ALT="$\omega $">, the filter's
output phase will be <!-- MATH
$\angle (H(\omega))$
-->
<IMG
WIDTH="63" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img854.png"
ALT="$\angle( H(\omega))$"> radians ahead of its input
phase.
<P>
The design and use of filters is a huge subject, because the wide range of uses
a filter might be put to suggests a wide variety of filter design processes.
In some applications a filter must exactly follow a prescribed frequency
response, in others it is important to minimize computation time, in others the
phase response is important, and in still others the filter must behave well
when its parameters change quickly with time.
<P>
<BR><HR>
<!--Table of Child-Links-->
<A ID="CHILD_LINKS"><STRONG>Subsections</STRONG></A>
<UL>
<LI><A ID="tex2html2443"
HREF="node128.html">Taxonomy of filters</A>
<UL>
<LI><A ID="tex2html2444"
HREF="node129.html">Low-pass and high-pass filters</A>
<LI><A ID="tex2html2445"
HREF="node130.html">Band-pass and stop-band filters</A>
<LI><A ID="tex2html2446"
HREF="node131.html">Equalizing filters</A>
</UL>
<BR>
<LI><A ID="tex2html2447"
HREF="node132.html">Elementary filters</A>
<UL>
<LI><A ID="tex2html2448"
HREF="node133.html">Elementary non-recirculating filter</A>
<LI><A ID="tex2html2449"
HREF="node134.html">Non-recirculating filter, second form</A>
<LI><A ID="tex2html2450"
HREF="node135.html">Elementary recirculating filter</A>
<LI><A ID="tex2html2451"
HREF="node136.html">Compound filters</A>
<LI><A ID="tex2html2452"
HREF="node137.html">Real outputs from complex filters</A>
<LI><A ID="tex2html2453"
HREF="node138.html">Two recirculating filters for the price of one</A>
</UL>
<BR>
<LI><A ID="tex2html2454"
HREF="node139.html">Designing filters</A>
<UL>
<LI><A ID="tex2html2455"
HREF="node140.html">One-pole low-pass filter</A>
<LI><A ID="tex2html2456"
HREF="node141.html">One-pole, one-zero high-pass filter</A>
<LI><A ID="tex2html2457"
HREF="node142.html">Shelving filter</A>
<LI><A ID="tex2html2458"
HREF="node143.html">Band-pass filter</A>
<LI><A ID="tex2html2459"
HREF="node144.html">Peaking and stop-band filter</A>
<LI><A ID="tex2html2460"
HREF="node145.html">Butterworth filters</A>
<LI><A ID="tex2html2461"
HREF="node146.html">Stretching the unit circle with rational functions</A>
<LI><A ID="tex2html2462"
HREF="node147.html">Butterworth band-pass filter</A>
<LI><A ID="tex2html2463"
HREF="node148.html">Time-varying coefficients</A>
<LI><A ID="tex2html2464"
HREF="node149.html">Impulse responses of recirculating filters</A>
<LI><A ID="tex2html2465"
HREF="node150.html">All-pass filters</A>
</UL>
<BR>
<LI><A ID="tex2html2466"
HREF="node151.html">Applications</A>
<UL>
<LI><A ID="tex2html2467"
HREF="node152.html">Subtractive synthesis</A>
<LI><A ID="tex2html2468"
HREF="node153.html">Envelope following</A>
<LI><A ID="tex2html2469"
HREF="node154.html">Single Sideband Modulation</A>
</UL>
<BR>
<LI><A ID="tex2html2470"
HREF="node155.html">Examples</A>
<UL>
<LI><A ID="tex2html2471"
HREF="node156.html">Prefabricated low-, high-, and band-pass filters</A>
<LI><A ID="tex2html2472"
HREF="node157.html">Prefabricated time-varying band-pass filter</A>
<LI><A ID="tex2html2473"
HREF="node158.html">Envelope followers</A>
<LI><A ID="tex2html2474"
HREF="node159.html">Single sideband modulation</A>
<LI><A ID="tex2html2475"
HREF="node160.html">Using elementary filters directly: shelving and peaking</A>
<LI><A ID="tex2html2476"
HREF="node161.html">Making and using all-pass filters</A>
</UL>
<BR>
<LI><A ID="tex2html2477"
HREF="node162.html">Exercises</A>
</UL>
<!--End of Table of Child-Links-->
<HR>
<!--Navigation Panel-->
<A ID="tex2html2441"
HREF="node128.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next.png"></A>
<A ID="tex2html2435"
HREF="book.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up.png"></A>
<A ID="tex2html2429"
HREF="node126.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="prev.png"></A>
<A ID="tex2html2437"
HREF="node4.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents.png"></A>
<A ID="tex2html2439"
HREF="node201.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index.png"></A>
<BR>
<B> Next:</B> <A ID="tex2html2442"
HREF="node128.html">Taxonomy of filters</A>
<B> Up:</B> <A ID="tex2html2436"
HREF="book.html">book</A>
<B> Previous:</B> <A ID="tex2html2430"
HREF="node126.html">Exercises</A>
&nbsp; <B> <A ID="tex2html2438"
HREF="node4.html">Contents</A></B>
&nbsp; <B> <A ID="tex2html2440"
HREF="node201.html">Index</A></B>
<!--End of Navigation Panel-->
<ADDRESS>
Miller Puckette
2006-12-30
</ADDRESS>
</BODY>
</HTML>