<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN"> <!--Converted with LaTeX2HTML 2002-2-1 (1.71) original version by: Nikos Drakos, CBLU, University of Leeds * revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan * with significant contributions from: Jens Lippmann, Marek Rouchal, Martin Wilck and others --> <HTML> <HEAD> <TITLE>Elementary non-recirculating filter</TITLE> <META NAME="description" CONTENT="Elementary non-recirculating filter"> <META NAME="keywords" CONTENT="book"> <META NAME="resource-type" CONTENT="document"> <META NAME="distribution" CONTENT="global"> <META NAME="Generator" CONTENT="LaTeX2HTML v2002-2-1"> <META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css"> <LINK REL="STYLESHEET" HREF="book.css"> <LINK REL="next" HREF="node134.html"> <LINK REL="previous" HREF="node132.html"> <LINK REL="up" HREF="node132.html"> <LINK REL="next" HREF="node134.html"> </HEAD> <BODY > <!--Navigation Panel--> <A NAME="tex2html2567" HREF="node134.html"> <IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next" SRC="file:/usr/local/share/lib/latex2html/icons/next.png"></A> <A NAME="tex2html2561" HREF="node132.html"> <IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up" SRC="file:/usr/local/share/lib/latex2html/icons/up.png"></A> <A NAME="tex2html2555" HREF="node132.html"> <IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous" SRC="file:/usr/local/share/lib/latex2html/icons/prev.png"></A> <A NAME="tex2html2563" HREF="node4.html"> <IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents" SRC="file:/usr/local/share/lib/latex2html/icons/contents.png"></A> <A NAME="tex2html2565" HREF="node201.html"> <IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index" SRC="file:/usr/local/share/lib/latex2html/icons/index.png"></A> <BR> <B> Next:</B> <A NAME="tex2html2568" HREF="node134.html">Non-recirculating filter, second form</A> <B> Up:</B> <A NAME="tex2html2562" HREF="node132.html">Elementary filters</A> <B> Previous:</B> <A NAME="tex2html2556" HREF="node132.html">Elementary filters</A> <B> <A NAME="tex2html2564" HREF="node4.html">Contents</A></B> <B> <A NAME="tex2html2566" HREF="node201.html">Index</A></B> <BR> <BR> <!--End of Navigation Panel--> <H2><A NAME="SECTION001221000000000000000"></A> <A NAME="sect8.nonrecirculating"></A> <BR> Elementary non-recirculating filter </H2> <P> The non-recirculating comb filter may be generalized to yield the design shown in Figure <A HREF="#fig08.07">8.7</A>. This is the <A NAME="10133"></A><A NAME="10134"></A><I>elementary non-recirculating filter</I>, of the first form. Its single, complex-valued parameter <IMG WIDTH="16" HEIGHT="30" ALIGN="MIDDLE" BORDER="0" SRC="img42.png" ALT="$Q$"> controls the complex gain of the delayed signal subtracted from the original one. <P> <DIV ALIGN="CENTER"><A NAME="fig08.07"></A><A NAME="10680"></A> <TABLE> <CAPTION ALIGN="BOTTOM"><STRONG>Figure 8.7:</STRONG> A delay network with a single-sample delay and a complex gain <IMG WIDTH="16" HEIGHT="30" ALIGN="MIDDLE" BORDER="0" SRC="img42.png" ALT="$Q$">. This is the non-recirculating elementary filter, first form. Compare the non-recirculating comb filter shown in Figure <A HREF="node108.html#fig07.03">7.3</A>, which corresponds to choosing <IMG WIDTH="57" HEIGHT="30" ALIGN="MIDDLE" BORDER="0" SRC="img43.png" ALT="$Q=-1$"> here.</CAPTION> <TR><TD><IMG WIDTH="90" HEIGHT="210" BORDER="0" SRC="img860.png" ALT="\begin{figure}\psfig{file=figs/fig08.07.ps}\end{figure}"></TD></TR> </TABLE> </DIV> <P> To find its frequency response, as in Chapter 7 we feed the delay network a complex sinusoid <!-- MATH $1, Z, {Z^2}, \ldots$ --> <IMG WIDTH="81" HEIGHT="34" ALIGN="MIDDLE" BORDER="0" SRC="img664.png" ALT="$1, Z, {Z^2}, \ldots$"> whose frequency is <!-- MATH $\omega=\arg(Z)$ --> <IMG WIDTH="81" HEIGHT="32" ALIGN="MIDDLE" BORDER="0" SRC="img861.png" ALT="$\omega=\arg(Z)$">. The <IMG WIDTH="13" HEIGHT="13" ALIGN="BOTTOM" BORDER="0" SRC="img75.png" ALT="$n$">th sample of the input is <IMG WIDTH="24" HEIGHT="14" ALIGN="BOTTOM" BORDER="0" SRC="img653.png" ALT="$Z^n$"> and that of the output is <BR><P></P> <DIV ALIGN="CENTER"> <!-- MATH \begin{displaymath} (1 - Q{Z^{-1}}){Z^n} \end{displaymath} --> <IMG WIDTH="99" HEIGHT="28" BORDER="0" SRC="img862.png" ALT="\begin{displaymath} (1 - Q{Z^{-1}}){Z^n} \end{displaymath}"> </DIV> <BR CLEAR="ALL"> <P></P> so the transfer function is <BR><P></P> <DIV ALIGN="CENTER"> <!-- MATH \begin{displaymath} H(Z) = 1 - Q{Z^{-1}} \end{displaymath} --> <IMG WIDTH="128" HEIGHT="28" BORDER="0" SRC="img863.png" ALT="\begin{displaymath} H(Z) = 1 - Q{Z^{-1}} \end{displaymath}"> </DIV> <BR CLEAR="ALL"> <P></P> This can be analyzed graphically as shown in Figure <A HREF="#fig08.08">8.8</A>. The real numbers <IMG WIDTH="11" HEIGHT="13" ALIGN="BOTTOM" BORDER="0" SRC="img467.png" ALT="$r$"> and <IMG WIDTH="13" HEIGHT="13" ALIGN="BOTTOM" BORDER="0" SRC="img7.png" ALT="$\alpha $"> are the magnitude and argument of the complex number <IMG WIDTH="16" HEIGHT="30" ALIGN="MIDDLE" BORDER="0" SRC="img42.png" ALT="$Q$">: <BR><P></P> <DIV ALIGN="CENTER"> <!-- MATH \begin{displaymath} Q = r \cdot (\cos(\alpha) + i \sin(\alpha)) \end{displaymath} --> <IMG WIDTH="178" HEIGHT="28" BORDER="0" SRC="img864.png" ALT="\begin{displaymath} Q = r \cdot (\cos(\alpha) + i \sin(\alpha)) \end{displaymath}"> </DIV> <BR CLEAR="ALL"> <P></P> The gain of the filter is the distance from the point <IMG WIDTH="16" HEIGHT="30" ALIGN="MIDDLE" BORDER="0" SRC="img42.png" ALT="$Q$"> to the point <IMG WIDTH="15" HEIGHT="14" ALIGN="BOTTOM" BORDER="0" SRC="img20.png" ALT="$Z$"> in the complex plane. Analytically we can see this because <BR><P></P> <DIV ALIGN="CENTER"> <!-- MATH \begin{displaymath} |1 - Q{Z^{-1}}| = |Z||1 - Q{Z^{-1}}| = |Q - Z| \end{displaymath} --> <IMG WIDTH="268" HEIGHT="28" BORDER="0" SRC="img865.png" ALT="\begin{displaymath} \vert 1 - Q{Z^{-1}}\vert = \vert Z\vert\vert 1 - Q{Z^{-1}}\vert = \vert Q - Z\vert \end{displaymath}"> </DIV> <BR CLEAR="ALL"> <P></P> Graphically, the number <IMG WIDTH="45" HEIGHT="34" ALIGN="MIDDLE" BORDER="0" SRC="img866.png" ALT="$Q{Z^{-1}}$"> is just the number <IMG WIDTH="16" HEIGHT="30" ALIGN="MIDDLE" BORDER="0" SRC="img42.png" ALT="$Q$"> rotated backwards (clockwise) by the angular frequency <IMG WIDTH="14" HEIGHT="13" ALIGN="BOTTOM" BORDER="0" SRC="img27.png" ALT="$\omega $"> of the incoming sinusoid. The value <!-- MATH $|1 - Q{Z^{-1}}|$ --> <IMG WIDTH="81" HEIGHT="34" ALIGN="MIDDLE" BORDER="0" SRC="img867.png" ALT="$\vert 1 - Q{Z^{-1}}\vert$"> is the distance from <IMG WIDTH="45" HEIGHT="34" ALIGN="MIDDLE" BORDER="0" SRC="img866.png" ALT="$Q{Z^{-1}}$"> to <IMG WIDTH="11" HEIGHT="13" ALIGN="BOTTOM" BORDER="0" SRC="img262.png" ALT="$1$"> in the complex plane, which is equal to the distance from <IMG WIDTH="16" HEIGHT="30" ALIGN="MIDDLE" BORDER="0" SRC="img42.png" ALT="$Q$"> to <IMG WIDTH="15" HEIGHT="14" ALIGN="BOTTOM" BORDER="0" SRC="img20.png" ALT="$Z$">. <P> <DIV ALIGN="CENTER"><A NAME="fig08.08"></A><A NAME="10688"></A> <TABLE> <CAPTION ALIGN="BOTTOM"><STRONG>Figure 8.8:</STRONG> Diagram for calculating the frequency response of the non-recirculating elementary filter (Figure <A HREF="#fig08.07">8.7</A>). The frequency response is given by the length of the segment connecting <IMG WIDTH="15" HEIGHT="14" ALIGN="BOTTOM" BORDER="0" SRC="img20.png" ALT="$Z$"> to <IMG WIDTH="16" HEIGHT="30" ALIGN="MIDDLE" BORDER="0" SRC="img42.png" ALT="$Q$"> in the complex plane.</CAPTION> <TR><TD><IMG WIDTH="341" HEIGHT="379" BORDER="0" SRC="img868.png" ALT="\begin{figure}\psfig{file=figs/fig08.08.ps}\end{figure}"></TD></TR> </TABLE> </DIV> <P> As the frequency of the input sweeps from 0 to <IMG WIDTH="21" HEIGHT="13" ALIGN="BOTTOM" BORDER="0" SRC="img16.png" ALT="$2\pi $">, the point <IMG WIDTH="15" HEIGHT="14" ALIGN="BOTTOM" BORDER="0" SRC="img20.png" ALT="$Z$"> travels couterclockwise around the unit circle. At the point where <!-- MATH $\omega = \alpha$ --> <IMG WIDTH="45" HEIGHT="13" ALIGN="BOTTOM" BORDER="0" SRC="img869.png" ALT="$\omega = \alpha$">, the distance is at a minimum, equal to <IMG WIDTH="38" HEIGHT="29" ALIGN="MIDDLE" BORDER="0" SRC="img870.png" ALT="$1-r$">. The maximum occurs which <IMG WIDTH="15" HEIGHT="14" ALIGN="BOTTOM" BORDER="0" SRC="img20.png" ALT="$Z$"> is at the opposite point of the circle. Figure <A HREF="#fig08.09">8.9</A> shows the transfer function for three different values of <IMG WIDTH="53" HEIGHT="32" ALIGN="MIDDLE" BORDER="0" SRC="img44.png" ALT="$r=\vert Q\vert$">. <P> <DIV ALIGN="CENTER"><A NAME="fig08.09"></A><A NAME="10689"></A> <TABLE> <CAPTION ALIGN="BOTTOM"><STRONG>Figure 8.9:</STRONG> Frequency response of the elementary non-recirculating filter Figure <A HREF="#fig08.07">8.7</A>. Three values of <IMG WIDTH="16" HEIGHT="30" ALIGN="MIDDLE" BORDER="0" SRC="img42.png" ALT="$Q$"> are used, all with the same argument (-2 radians), but with varying absolute value (magnitude) <IMG WIDTH="53" HEIGHT="32" ALIGN="MIDDLE" BORDER="0" SRC="img44.png" ALT="$r=\vert Q\vert$">.</CAPTION> <TR><TD><IMG WIDTH="323" HEIGHT="212" BORDER="0" SRC="img871.png" ALT="\begin{figure}\psfig{file=figs/fig08.09.ps}\end{figure}"></TD></TR> </TABLE> </DIV> <P> <HR> <!--Navigation Panel--> <A NAME="tex2html2567" HREF="node134.html"> <IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next" SRC="file:/usr/local/share/lib/latex2html/icons/next.png"></A> <A NAME="tex2html2561" HREF="node132.html"> <IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up" SRC="file:/usr/local/share/lib/latex2html/icons/up.png"></A> <A NAME="tex2html2555" HREF="node132.html"> <IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous" SRC="file:/usr/local/share/lib/latex2html/icons/prev.png"></A> <A NAME="tex2html2563" HREF="node4.html"> <IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents" SRC="file:/usr/local/share/lib/latex2html/icons/contents.png"></A> <A NAME="tex2html2565" HREF="node201.html"> <IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index" SRC="file:/usr/local/share/lib/latex2html/icons/index.png"></A> <BR> <B> Next:</B> <A NAME="tex2html2568" HREF="node134.html">Non-recirculating filter, second form</A> <B> Up:</B> <A NAME="tex2html2562" HREF="node132.html">Elementary filters</A> <B> Previous:</B> <A NAME="tex2html2556" HREF="node132.html">Elementary filters</A> <B> <A NAME="tex2html2564" HREF="node4.html">Contents</A></B> <B> <A NAME="tex2html2566" HREF="node201.html">Index</A></B> <!--End of Navigation Panel--> <ADDRESS> Miller Puckette 2006-12-30 </ADDRESS> </BODY> </HTML>