replace '<A NAME=' with '<A ID='

This commit is contained in:
2022-04-12 23:32:40 -03:00
parent 19822c017f
commit 2f20b9ef0d
202 changed files with 5110 additions and 5110 deletions

View File

@@ -30,43 +30,43 @@ original version by: Nikos Drakos, CBLU, University of Leeds
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html1697"
<A ID="tex2html1697"
HREF="node78.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next.png"></A>
<A NAME="tex2html1691"
<A ID="tex2html1691"
HREF="node75.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up.png"></A>
<A NAME="tex2html1685"
<A ID="tex2html1685"
HREF="node76.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="prev.png"></A>
<A NAME="tex2html1693"
<A ID="tex2html1693"
HREF="node4.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents.png"></A>
<A NAME="tex2html1695"
<A ID="tex2html1695"
HREF="node201.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html1698"
<B> Next:</B> <A ID="tex2html1698"
HREF="node78.html">Waveshaping</A>
<B> Up:</B> <A NAME="tex2html1692"
<B> Up:</B> <A ID="tex2html1692"
HREF="node75.html">Modulation</A>
<B> Previous:</B> <A NAME="tex2html1686"
<B> Previous:</B> <A ID="tex2html1686"
HREF="node76.html">Taxonomy of spectra</A>
&nbsp; <B> <A NAME="tex2html1694"
&nbsp; <B> <A ID="tex2html1694"
HREF="node4.html">Contents</A></B>
&nbsp; <B> <A NAME="tex2html1696"
&nbsp; <B> <A ID="tex2html1696"
HREF="node201.html">Index</A></B>
<BR>
<BR>
<!--End of Navigation Panel-->
<H1><A NAME="SECTION00920000000000000000"></A>
<A NAME="sect5.ringmod"></A>
<H1><A ID="SECTION00920000000000000000"></A>
<A ID="sect5.ringmod"></A>
<BR>
Multiplying audio signals
</H1>
@@ -78,7 +78,7 @@ Chapter 1. For a full understanding of the algebra of audio
signals we must also consider the situation where two audio signals,
neither of which may be assumed to change slowly, are multiplied. The key to understanding
what happens is the Cosine Product Formula:
<A NAME="eq-cosinemultiplication"></A>
<A ID="eq-cosinemultiplication"></A>
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
@@ -182,16 +182,16 @@ one at the sum of the two original frequencies, and one at their difference.
ALT="$\alpha-\beta$"> happens to be negative, simply switch the
original two sinusoids and the difference will then be positive.) These
two new components are called
<A NAME="5635"></A><I>sidebands</I>.
<A ID="5635"></A><I>sidebands</I>.
<P>
This gives us a technique for shifting the component frequencies
of a sound, called
<A NAME="5637"></A><A NAME="5638"></A><I>ring modulation</I>, which is shown in its simplest form in Figure
<A ID="5637"></A><A ID="5638"></A><I>ring modulation</I>, which is shown in its simplest form in Figure
<A HREF="#fig05.02">5.2</A>. An oscillator provides a
<A NAME="5641"></A><I>carrier signal</I>, which
<A ID="5641"></A><I>carrier signal</I>, which
is simply multiplied by the input. In this context the input is called the
<A NAME="5643"></A><I>modulating signal</I>.
<A ID="5643"></A><I>modulating signal</I>.
The term "ring modulation" is often used
more generally to mean multiplying any two signals together, but here we'll
just consider using a sinusoidal carrier signal. (The technique of ring
@@ -202,7 +202,7 @@ ring modulator.)
<P>
<DIV ALIGN="CENTER"><A NAME="fig05.02"></A><A NAME="5649"></A>
<DIV ALIGN="CENTER"><A ID="fig05.02"></A><A ID="5649"></A>
<TABLE>
<CAPTION ALIGN="BOTTOM"><STRONG>Figure 5.2:</STRONG>
Block diagram for ring modulating an input signal with a sinusoid.</CAPTION>
@@ -267,7 +267,7 @@ each at an amplitude of <IMG
<P>
<DIV ALIGN="CENTER"><A NAME="fig05.03"></A><A NAME="5655"></A>
<DIV ALIGN="CENTER"><A ID="fig05.03"></A><A ID="5655"></A>
<TABLE>
<CAPTION ALIGN="BOTTOM"><STRONG>Figure 5.3:</STRONG>
Sidebands arising from multiplying two sinusoids of frequency
@@ -521,7 +521,7 @@ result are changed according to relatively simple rules.
<P>
<DIV ALIGN="CENTER"><A NAME="fig05.04"></A><A NAME="5669"></A>
<DIV ALIGN="CENTER"><A ID="fig05.04"></A><A ID="5669"></A>
<TABLE>
<CAPTION ALIGN="BOTTOM"><STRONG>Figure 5.4:</STRONG>
Result of ring modulation of a complex signal by a pure sinusoid:
@@ -579,36 +579,36 @@ is the shift in spectral envelope.
<P>
<HR>
<!--Navigation Panel-->
<A NAME="tex2html1697"
<A ID="tex2html1697"
HREF="node78.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next.png"></A>
<A NAME="tex2html1691"
<A ID="tex2html1691"
HREF="node75.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up.png"></A>
<A NAME="tex2html1685"
<A ID="tex2html1685"
HREF="node76.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="prev.png"></A>
<A NAME="tex2html1693"
<A ID="tex2html1693"
HREF="node4.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents.png"></A>
<A NAME="tex2html1695"
<A ID="tex2html1695"
HREF="node201.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html1698"
<B> Next:</B> <A ID="tex2html1698"
HREF="node78.html">Waveshaping</A>
<B> Up:</B> <A NAME="tex2html1692"
<B> Up:</B> <A ID="tex2html1692"
HREF="node75.html">Modulation</A>
<B> Previous:</B> <A NAME="tex2html1686"
<B> Previous:</B> <A ID="tex2html1686"
HREF="node76.html">Taxonomy of spectra</A>
&nbsp; <B> <A NAME="tex2html1694"
&nbsp; <B> <A ID="tex2html1694"
HREF="node4.html">Contents</A></B>
&nbsp; <B> <A NAME="tex2html1696"
&nbsp; <B> <A ID="tex2html1696"
HREF="node201.html">Index</A></B>
<!--End of Navigation Panel-->
<ADDRESS>