replace '<A NAME=' with '<A ID='

This commit is contained in:
2022-04-12 23:32:40 -03:00
parent 19822c017f
commit 2f20b9ef0d
202 changed files with 5110 additions and 5110 deletions

View File

@@ -30,42 +30,42 @@ original version by: Nikos Drakos, CBLU, University of Leeds
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html2199"
<A ID="tex2html2199"
HREF="node111.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next.png"></A>
<A NAME="tex2html2193"
<A ID="tex2html2193"
HREF="node104.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up.png"></A>
<A NAME="tex2html2187"
<A ID="tex2html2187"
HREF="node109.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="prev.png"></A>
<A NAME="tex2html2195"
<A ID="tex2html2195"
HREF="node4.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents.png"></A>
<A NAME="tex2html2197"
<A ID="tex2html2197"
HREF="node201.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html2200"
<B> Next:</B> <A ID="tex2html2200"
HREF="node111.html">Artificial reverberation</A>
<B> Up:</B> <A NAME="tex2html2194"
<B> Up:</B> <A ID="tex2html2194"
HREF="node104.html">Time shifts and delays</A>
<B> Previous:</B> <A NAME="tex2html2188"
<B> Previous:</B> <A ID="tex2html2188"
HREF="node109.html">Recirculating delay networks</A>
&nbsp; <B> <A NAME="tex2html2196"
&nbsp; <B> <A ID="tex2html2196"
HREF="node4.html">Contents</A></B>
&nbsp; <B> <A NAME="tex2html2198"
&nbsp; <B> <A ID="tex2html2198"
HREF="node201.html">Index</A></B>
<BR>
<BR>
<!--End of Navigation Panel-->
<H1><A NAME="SECTION001150000000000000000">
<H1><A ID="SECTION001150000000000000000">
Power conservation and complex delay networks</A>
</H1>
@@ -90,7 +90,7 @@ the gain, suitably defined, is exactly one.
<P>
<DIV ALIGN="CENTER"><A NAME="fig07.11"></A><A NAME="8003"></A>
<DIV ALIGN="CENTER"><A ID="fig07.11"></A><A ID="8003"></A>
<TABLE>
<CAPTION ALIGN="BOTTOM"><STRONG>Figure 7.11:</STRONG>
First fundamental building block for unitary delay networks:
@@ -163,7 +163,7 @@ where <IMG
It turns out that a wide range of interesting delay networks has the property
that the total power output equals the total power input;
they are called
<A NAME="8013"></A><I>unitary</I>. To start with, we can put any number of delays in parallel, as
<A ID="8013"></A><I>unitary</I>. To start with, we can put any number of delays in parallel, as
shown in Figure <A HREF="#fig07.11">7.11</A>. Whatever the total power of the inputs,
the total power of the outputs has to equal it.
@@ -233,7 +233,7 @@ of a collection of signals must must be preserved by rotation.
<P>
<DIV ALIGN="CENTER"><A NAME="fig07.12"></A><A NAME="8024"></A>
<DIV ALIGN="CENTER"><A ID="fig07.12"></A><A ID="8024"></A>
<TABLE>
<CAPTION ALIGN="BOTTOM"><STRONG>Figure 7.12:</STRONG>
Second fundamental building block for unitary delay networks:
@@ -329,7 +329,7 @@ s = \sin(\theta)
<BR CLEAR="ALL">
<P></P>
for an
<A NAME="8036"></A><I>angle of rotation</I> <IMG
<A ID="8036"></A><I>angle of rotation</I> <IMG
WIDTH="11" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
SRC="img634.png"
ALT="$\theta$">.
@@ -423,7 +423,7 @@ unit magnitude and argument <IMG
<P>
If we perform a rotation on a pair of signals and then invert one (but not the
other) of them, the result is a
<A NAME="8050"></A>
<A ID="8050"></A>
<I>reflection</I>.
This also preserves total signal power, since we can invert any or all of a
collection of signals without changing the total power. In two dimensions, a
@@ -486,7 +486,7 @@ a) because each signal need only be multiplied by the one quantity <IMG
<P>
<DIV ALIGN="CENTER"><A NAME="fig07.13"></A><A NAME="8389"></A>
<DIV ALIGN="CENTER"><A ID="fig07.13"></A><A ID="8389"></A>
<TABLE>
<CAPTION ALIGN="BOTTOM"><STRONG>Figure 7.13:</STRONG>
Details about rotation (and reflection) matrix operations: (a)
@@ -535,7 +535,7 @@ recirculating networks that still enjoy flat frequency responses.
<P>
<DIV ALIGN="CENTER"><A NAME="fig07.14"></A><A NAME="8069"></A>
<DIV ALIGN="CENTER"><A ID="fig07.14"></A><A ID="8069"></A>
<TABLE>
<CAPTION ALIGN="BOTTOM"><STRONG>Figure 7.14:</STRONG>
Flat frequency response in recirculating networks: (a) in general,
@@ -655,7 +655,7 @@ let the transformation <IMG
WIDTH="20" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
SRC="img31.png"
ALT="$W$"> output, the result is the well-known
<A NAME="8086"></A><A NAME="8087"></A><I>all-pass filter</I>.
<A ID="8086"></A><A ID="8087"></A><I>all-pass filter</I>.
With some juggling, and letting <!-- MATH
$c = \cos(\theta)$
-->
@@ -670,36 +670,36 @@ of which we will visit later in this book.
<P>
<HR>
<!--Navigation Panel-->
<A NAME="tex2html2199"
<A ID="tex2html2199"
HREF="node111.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next.png"></A>
<A NAME="tex2html2193"
<A ID="tex2html2193"
HREF="node104.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up.png"></A>
<A NAME="tex2html2187"
<A ID="tex2html2187"
HREF="node109.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="prev.png"></A>
<A NAME="tex2html2195"
<A ID="tex2html2195"
HREF="node4.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents.png"></A>
<A NAME="tex2html2197"
<A ID="tex2html2197"
HREF="node201.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html2200"
<B> Next:</B> <A ID="tex2html2200"
HREF="node111.html">Artificial reverberation</A>
<B> Up:</B> <A NAME="tex2html2194"
<B> Up:</B> <A ID="tex2html2194"
HREF="node104.html">Time shifts and delays</A>
<B> Previous:</B> <A NAME="tex2html2188"
<B> Previous:</B> <A ID="tex2html2188"
HREF="node109.html">Recirculating delay networks</A>
&nbsp; <B> <A NAME="tex2html2196"
&nbsp; <B> <A ID="tex2html2196"
HREF="node4.html">Contents</A></B>
&nbsp; <B> <A NAME="tex2html2198"
&nbsp; <B> <A ID="tex2html2198"
HREF="node201.html">Index</A></B>
<!--End of Navigation Panel-->
<ADDRESS>