351 lines
9.6 KiB
HTML
351 lines
9.6 KiB
HTML
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
|
||
|
|
||
|
<!--Converted with LaTeX2HTML 2002-2-1 (1.71)
|
||
|
original version by: Nikos Drakos, CBLU, University of Leeds
|
||
|
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
|
||
|
* with significant contributions from:
|
||
|
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
|
||
|
<HTML>
|
||
|
<HEAD>
|
||
|
<TITLE>Pulse trains via waveshaping</TITLE>
|
||
|
<META NAME="description" CONTENT="Pulse trains via waveshaping">
|
||
|
<META NAME="keywords" CONTENT="book">
|
||
|
<META NAME="resource-type" CONTENT="document">
|
||
|
<META NAME="distribution" CONTENT="global">
|
||
|
|
||
|
<META NAME="Generator" CONTENT="LaTeX2HTML v2002-2-1">
|
||
|
<META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">
|
||
|
|
||
|
<LINK REL="STYLESHEET" HREF="book.css">
|
||
|
|
||
|
<LINK REL="next" HREF="node93.html">
|
||
|
<LINK REL="previous" HREF="node91.html">
|
||
|
<LINK REL="up" HREF="node91.html">
|
||
|
<LINK REL="next" HREF="node93.html">
|
||
|
</HEAD>
|
||
|
|
||
|
<BODY >
|
||
|
<!--Navigation Panel-->
|
||
|
<A NAME="tex2html1927"
|
||
|
HREF="node93.html">
|
||
|
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
|
||
|
SRC="file:/usr/local/share/lib/latex2html/icons/next.png"></A>
|
||
|
<A NAME="tex2html1921"
|
||
|
HREF="node91.html">
|
||
|
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
|
||
|
SRC="file:/usr/local/share/lib/latex2html/icons/up.png"></A>
|
||
|
<A NAME="tex2html1915"
|
||
|
HREF="node91.html">
|
||
|
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
|
||
|
SRC="file:/usr/local/share/lib/latex2html/icons/prev.png"></A>
|
||
|
<A NAME="tex2html1923"
|
||
|
HREF="node4.html">
|
||
|
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
|
||
|
SRC="file:/usr/local/share/lib/latex2html/icons/contents.png"></A>
|
||
|
<A NAME="tex2html1925"
|
||
|
HREF="node201.html">
|
||
|
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
|
||
|
SRC="file:/usr/local/share/lib/latex2html/icons/index.png"></A>
|
||
|
<BR>
|
||
|
<B> Next:</B> <A NAME="tex2html1928"
|
||
|
HREF="node93.html">Pulse trains via wavetable</A>
|
||
|
<B> Up:</B> <A NAME="tex2html1922"
|
||
|
HREF="node91.html">Pulse trains</A>
|
||
|
<B> Previous:</B> <A NAME="tex2html1916"
|
||
|
HREF="node91.html">Pulse trains</A>
|
||
|
<B> <A NAME="tex2html1924"
|
||
|
HREF="node4.html">Contents</A></B>
|
||
|
<B> <A NAME="tex2html1926"
|
||
|
HREF="node201.html">Index</A></B>
|
||
|
<BR>
|
||
|
<BR>
|
||
|
<!--End of Navigation Panel-->
|
||
|
|
||
|
<H2><A NAME="SECTION001021000000000000000">
|
||
|
Pulse trains via waveshaping</A>
|
||
|
</H2>
|
||
|
|
||
|
<P>
|
||
|
When we use waveshaping the shape of the formant is determined by
|
||
|
a modulation term
|
||
|
<BR><P></P>
|
||
|
<DIV ALIGN="CENTER">
|
||
|
<!-- MATH
|
||
|
\begin{displaymath}
|
||
|
{m_a}[n] = f (a \cos(\omega n))
|
||
|
\end{displaymath}
|
||
|
-->
|
||
|
|
||
|
<IMG
|
||
|
WIDTH="147" HEIGHT="28" BORDER="0"
|
||
|
SRC="img561.png"
|
||
|
ALT="\begin{displaymath}
|
||
|
{m_a}[n] = f (a \cos(\omega n))
|
||
|
\end{displaymath}">
|
||
|
</DIV>
|
||
|
<BR CLEAR="ALL">
|
||
|
<P></P>
|
||
|
For small values of the index <IMG
|
||
|
WIDTH="11" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||
|
SRC="img4.png"
|
||
|
ALT="$a$">, the modulation term varies only slightly from
|
||
|
the constant value <IMG
|
||
|
WIDTH="33" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
||
|
SRC="img562.png"
|
||
|
ALT="$f(0)$">, so most of the energy is concentrated at DC.
|
||
|
As <IMG
|
||
|
WIDTH="11" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||
|
SRC="img4.png"
|
||
|
ALT="$a$"> increases, the energy spreads out among progressively higher harmonics
|
||
|
of the fundamental <IMG
|
||
|
WIDTH="14" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||
|
SRC="img27.png"
|
||
|
ALT="$\omega $">. Depending on the function <IMG
|
||
|
WIDTH="13" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
|
||
|
SRC="img112.png"
|
||
|
ALT="$f$">, this spread
|
||
|
may be orderly or disorderly. An orderly spread may be desirable and
|
||
|
then again may not, depending on whether our goal is a predictable spectrum or
|
||
|
a wide range of different (and perhaps hard-to-predict) spectra.
|
||
|
|
||
|
<P>
|
||
|
The waveshaping function <IMG
|
||
|
WIDTH="71" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
||
|
SRC="img563.png"
|
||
|
ALT="$f(x) = {e^x}$">, analyzed on
|
||
|
Page <A HREF="node85.html#sect5.example.expon"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]"
|
||
|
SRC="file:/usr/local/share/lib/latex2html/icons/crossref.png"></A>,
|
||
|
gives well-behaved, simple and predictable results. After normalizing suitably,
|
||
|
we got the spectra shown in Figure <A HREF="node85.html#fig05.13">5.13</A>. A slight rewriting of the
|
||
|
waveshaping modulator for this choice of <IMG
|
||
|
WIDTH="13" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
|
||
|
SRC="img112.png"
|
||
|
ALT="$f$"> (and taking the renormalization
|
||
|
into account) gives:
|
||
|
<BR><P></P>
|
||
|
<DIV ALIGN="CENTER">
|
||
|
<!-- MATH
|
||
|
\begin{displaymath}
|
||
|
{m_a}[n] = {e^{a \cdot (\cos(\omega n) - 1))}}
|
||
|
\end{displaymath}
|
||
|
-->
|
||
|
|
||
|
<IMG
|
||
|
WIDTH="153" HEIGHT="28" BORDER="0"
|
||
|
SRC="img564.png"
|
||
|
ALT="\begin{displaymath}
|
||
|
{m_a}[n] = {e^{a \cdot (\cos(\omega n) - 1))}}
|
||
|
\end{displaymath}">
|
||
|
</DIV>
|
||
|
<BR CLEAR="ALL">
|
||
|
<P></P>
|
||
|
<BR><P></P>
|
||
|
<DIV ALIGN="CENTER">
|
||
|
<!-- MATH
|
||
|
\begin{displaymath}
|
||
|
= e ^ {
|
||
|
{ -\left [
|
||
|
b \sin {\omega \over 2}
|
||
|
\right ] }
|
||
|
^2
|
||
|
}
|
||
|
\end{displaymath}
|
||
|
-->
|
||
|
|
||
|
<IMG
|
||
|
WIDTH="84" HEIGHT="24" BORDER="0"
|
||
|
SRC="img565.png"
|
||
|
ALT="\begin{displaymath}
|
||
|
= e ^ {
|
||
|
{ -\left [
|
||
|
b \sin {\omega \over 2}
|
||
|
\right ] }
|
||
|
^2
|
||
|
}
|
||
|
\end{displaymath}">
|
||
|
</DIV>
|
||
|
<BR CLEAR="ALL">
|
||
|
<P></P>
|
||
|
where <IMG
|
||
|
WIDTH="55" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
|
||
|
SRC="img566.png"
|
||
|
ALT="${b^2}=2a$"> so that <IMG
|
||
|
WIDTH="10" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
|
||
|
SRC="img21.png"
|
||
|
ALT="$b$"> is proportional to the bandwidth. This can
|
||
|
be rewritten as
|
||
|
<BR><P></P>
|
||
|
<DIV ALIGN="CENTER">
|
||
|
<!-- MATH
|
||
|
\begin{displaymath}
|
||
|
{m_a}[n] = g ( b \sin {\omega \over 2} n )
|
||
|
\end{displaymath}
|
||
|
-->
|
||
|
|
||
|
<IMG
|
||
|
WIDTH="136" HEIGHT="35" BORDER="0"
|
||
|
SRC="img567.png"
|
||
|
ALT="\begin{displaymath}
|
||
|
{m_a}[n] = g ( b \sin {\omega \over 2} n )
|
||
|
\end{displaymath}">
|
||
|
</DIV>
|
||
|
<BR CLEAR="ALL">
|
||
|
<P></P>
|
||
|
with
|
||
|
<BR><P></P>
|
||
|
<DIV ALIGN="CENTER">
|
||
|
<!-- MATH
|
||
|
\begin{displaymath}
|
||
|
g(x) = e ^ {- x ^ 2}
|
||
|
\end{displaymath}
|
||
|
-->
|
||
|
|
||
|
<IMG
|
||
|
WIDTH="80" HEIGHT="28" BORDER="0"
|
||
|
SRC="img568.png"
|
||
|
ALT="\begin{displaymath}
|
||
|
g(x) = e ^ {- x ^ 2}
|
||
|
\end{displaymath}">
|
||
|
</DIV>
|
||
|
<BR CLEAR="ALL">
|
||
|
<P></P>
|
||
|
Except for a missing normalization factor, this is a Gaussian distribution,
|
||
|
sometimes called a ``bell curve". The amplitudes of the harmonics are
|
||
|
given by Bessel ``I" type functions.
|
||
|
|
||
|
<P>
|
||
|
Another fine choice is the (again unnormalized) Cauchy distribution:
|
||
|
<BR><P></P>
|
||
|
<DIV ALIGN="CENTER">
|
||
|
<!-- MATH
|
||
|
\begin{displaymath}
|
||
|
h(x) = {1\over{1 + {x^2}}}
|
||
|
\end{displaymath}
|
||
|
-->
|
||
|
|
||
|
<IMG
|
||
|
WIDTH="97" HEIGHT="40" BORDER="0"
|
||
|
SRC="img569.png"
|
||
|
ALT="\begin{displaymath}
|
||
|
h(x) = {1\over{1 + {x^2}}}
|
||
|
\end{displaymath}">
|
||
|
</DIV>
|
||
|
<BR CLEAR="ALL">
|
||
|
<P></P>
|
||
|
which gives rise to a spectrum of exponentially falling harmonics:
|
||
|
<BR><P></P>
|
||
|
<DIV ALIGN="CENTER">
|
||
|
<!-- MATH
|
||
|
\begin{displaymath}
|
||
|
h(b \sin({\omega \over 2} n)) =
|
||
|
G \cdot \left (
|
||
|
{1\over 2} + H \cos(\omega n) + {H^2} \cos(2 \omega n)
|
||
|
+ \cdots
|
||
|
\right )
|
||
|
\end{displaymath}
|
||
|
-->
|
||
|
|
||
|
<IMG
|
||
|
WIDTH="397" HEIGHT="45" BORDER="0"
|
||
|
SRC="img570.png"
|
||
|
ALT="\begin{displaymath}
|
||
|
h(b \sin({\omega \over 2} n)) =
|
||
|
G \cdot \left (
|
||
|
{1\over 2...
|
||
|
...H \cos(\omega n) + {H^2} \cos(2 \omega n)
|
||
|
+ \cdots
|
||
|
\right )
|
||
|
\end{displaymath}">
|
||
|
</DIV>
|
||
|
<BR CLEAR="ALL">
|
||
|
<P></P>
|
||
|
where <IMG
|
||
|
WIDTH="16" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
|
||
|
SRC="img571.png"
|
||
|
ALT="$G$"> and <IMG
|
||
|
WIDTH="18" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
|
||
|
SRC="img25.png"
|
||
|
ALT="$H$"> are functions of the index <IMG
|
||
|
WIDTH="10" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
|
||
|
SRC="img21.png"
|
||
|
ALT="$b$">
|
||
|
(explicit formulas are given in [<A
|
||
|
HREF="node202.html#r-puckette95a">Puc95a</A>]).
|
||
|
|
||
|
<P>
|
||
|
In both this and the Gaussian case above, the bandwidth (counted in peaks,
|
||
|
i.e., units of <IMG
|
||
|
WIDTH="14" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||
|
SRC="img27.png"
|
||
|
ALT="$\omega $">) is roughly proportional to the index <IMG
|
||
|
WIDTH="10" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
|
||
|
SRC="img21.png"
|
||
|
ALT="$b$">, and the
|
||
|
amplitude of the DC term (the apex of the spectrum) is roughly proportional
|
||
|
to <IMG
|
||
|
WIDTH="66" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
||
|
SRC="img572.png"
|
||
|
ALT="$1/(1+b)$"> .
|
||
|
For either waveshaping function (<IMG
|
||
|
WIDTH="11" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
||
|
SRC="img29.png"
|
||
|
ALT="$g$"> or <IMG
|
||
|
WIDTH="12" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
|
||
|
SRC="img194.png"
|
||
|
ALT="$h$">), if <IMG
|
||
|
WIDTH="10" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
|
||
|
SRC="img21.png"
|
||
|
ALT="$b$"> is larger than about 2,
|
||
|
the waveshape of <!-- MATH
|
||
|
${m_a}(\omega n)$
|
||
|
-->
|
||
|
<IMG
|
||
|
WIDTH="57" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
||
|
SRC="img573.png"
|
||
|
ALT="${m_a}(\omega n)$"> is
|
||
|
approximately a (forward or backward) scan of the transfer function, so
|
||
|
the resulting waveform looks
|
||
|
like pulses whose widths decrease as the specified bandwidth increases.
|
||
|
|
||
|
<P>
|
||
|
<HR>
|
||
|
<!--Navigation Panel-->
|
||
|
<A NAME="tex2html1927"
|
||
|
HREF="node93.html">
|
||
|
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
|
||
|
SRC="file:/usr/local/share/lib/latex2html/icons/next.png"></A>
|
||
|
<A NAME="tex2html1921"
|
||
|
HREF="node91.html">
|
||
|
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
|
||
|
SRC="file:/usr/local/share/lib/latex2html/icons/up.png"></A>
|
||
|
<A NAME="tex2html1915"
|
||
|
HREF="node91.html">
|
||
|
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
|
||
|
SRC="file:/usr/local/share/lib/latex2html/icons/prev.png"></A>
|
||
|
<A NAME="tex2html1923"
|
||
|
HREF="node4.html">
|
||
|
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
|
||
|
SRC="file:/usr/local/share/lib/latex2html/icons/contents.png"></A>
|
||
|
<A NAME="tex2html1925"
|
||
|
HREF="node201.html">
|
||
|
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
|
||
|
SRC="file:/usr/local/share/lib/latex2html/icons/index.png"></A>
|
||
|
<BR>
|
||
|
<B> Next:</B> <A NAME="tex2html1928"
|
||
|
HREF="node93.html">Pulse trains via wavetable</A>
|
||
|
<B> Up:</B> <A NAME="tex2html1922"
|
||
|
HREF="node91.html">Pulse trains</A>
|
||
|
<B> Previous:</B> <A NAME="tex2html1916"
|
||
|
HREF="node91.html">Pulse trains</A>
|
||
|
<B> <A NAME="tex2html1924"
|
||
|
HREF="node4.html">Contents</A></B>
|
||
|
<B> <A NAME="tex2html1926"
|
||
|
HREF="node201.html">Index</A></B>
|
||
|
<!--End of Navigation Panel-->
|
||
|
<ADDRESS>
|
||
|
Miller Puckette
|
||
|
2006-12-30
|
||
|
</ADDRESS>
|
||
|
</BODY>
|
||
|
</HTML>
|