265 lines
6.3 KiB
HTML
265 lines
6.3 KiB
HTML
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
|
||
|
|
||
|
<!--Converted with LaTeX2HTML 2002-2-1 (1.71)
|
||
|
original version by: Nikos Drakos, CBLU, University of Leeds
|
||
|
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
|
||
|
* with significant contributions from:
|
||
|
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
|
||
|
<HTML>
|
||
|
<HEAD>
|
||
|
<TITLE>Square and symmetric triangle waves</TITLE>
|
||
|
<META NAME="description" CONTENT="Square and symmetric triangle waves">
|
||
|
<META NAME="keywords" CONTENT="book">
|
||
|
<META NAME="resource-type" CONTENT="document">
|
||
|
<META NAME="distribution" CONTENT="global">
|
||
|
|
||
|
<META NAME="Generator" CONTENT="LaTeX2HTML v2002-2-1">
|
||
|
<META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">
|
||
|
|
||
|
<LINK REL="STYLESHEET" HREF="book.css">
|
||
|
|
||
|
<LINK REL="next" HREF="node192.html">
|
||
|
<LINK REL="previous" HREF="node190.html">
|
||
|
<LINK REL="up" HREF="node188.html">
|
||
|
<LINK REL="next" HREF="node192.html">
|
||
|
</HEAD>
|
||
|
|
||
|
<BODY >
|
||
|
<!--Navigation Panel-->
|
||
|
<A NAME="tex2html3428"
|
||
|
HREF="node192.html">
|
||
|
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
|
||
|
SRC="file:/usr/local/share/lib/latex2html/icons/next.png"></A>
|
||
|
<A NAME="tex2html3422"
|
||
|
HREF="node188.html">
|
||
|
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
|
||
|
SRC="file:/usr/local/share/lib/latex2html/icons/up.png"></A>
|
||
|
<A NAME="tex2html3416"
|
||
|
HREF="node190.html">
|
||
|
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
|
||
|
SRC="file:/usr/local/share/lib/latex2html/icons/prev.png"></A>
|
||
|
<A NAME="tex2html3424"
|
||
|
HREF="node4.html">
|
||
|
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
|
||
|
SRC="file:/usr/local/share/lib/latex2html/icons/contents.png"></A>
|
||
|
<A NAME="tex2html3426"
|
||
|
HREF="node201.html">
|
||
|
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
|
||
|
SRC="file:/usr/local/share/lib/latex2html/icons/index.png"></A>
|
||
|
<BR>
|
||
|
<B> Next:</B> <A NAME="tex2html3429"
|
||
|
HREF="node192.html">General (non-symmetric) triangle wave</A>
|
||
|
<B> Up:</B> <A NAME="tex2html3423"
|
||
|
HREF="node188.html">Fourier series of the</A>
|
||
|
<B> Previous:</B> <A NAME="tex2html3417"
|
||
|
HREF="node190.html">Parabolic wave</A>
|
||
|
<B> <A NAME="tex2html3425"
|
||
|
HREF="node4.html">Contents</A></B>
|
||
|
<B> <A NAME="tex2html3427"
|
||
|
HREF="node201.html">Index</A></B>
|
||
|
<BR>
|
||
|
<BR>
|
||
|
<!--End of Navigation Panel-->
|
||
|
|
||
|
<H2><A NAME="SECTION001433000000000000000">
|
||
|
Square and symmetric triangle waves</A>
|
||
|
</H2>
|
||
|
|
||
|
<P>
|
||
|
|
||
|
<DIV ALIGN="CENTER"><A NAME="fig10.06"></A><A NAME="14409"></A>
|
||
|
<TABLE>
|
||
|
<CAPTION ALIGN="BOTTOM"><STRONG>Figure 10.6:</STRONG>
|
||
|
Symmetric triangle wave, obtained by superposing parabolic waves with
|
||
|
<IMG
|
||
|
WIDTH="46" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
||
|
SRC="img66.png"
|
||
|
ALT="$(M, c)$"> pairs equal to <IMG
|
||
|
WIDTH="38" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
||
|
SRC="img67.png"
|
||
|
ALT="$(0, 8)$"> and <IMG
|
||
|
WIDTH="72" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
||
|
SRC="img68.png"
|
||
|
ALT="$(N/2, -8)$">.</CAPTION>
|
||
|
<TR><TD><IMG
|
||
|
WIDTH="473" HEIGHT="97" BORDER="0"
|
||
|
SRC="img1334.png"
|
||
|
ALT="\begin{figure}\psfig{file=figs/fig10.06.ps}\end{figure}"></TD></TR>
|
||
|
</TABLE>
|
||
|
</DIV>
|
||
|
|
||
|
<P>
|
||
|
To see how to obtain Fourier series for classical waveforms in general,
|
||
|
consider first the square wave,
|
||
|
<BR><P></P>
|
||
|
<DIV ALIGN="CENTER">
|
||
|
<!-- MATH
|
||
|
\begin{displaymath}
|
||
|
x[n] = s[n] - s[n-{N \over 2}]
|
||
|
\end{displaymath}
|
||
|
-->
|
||
|
|
||
|
<IMG
|
||
|
WIDTH="155" HEIGHT="39" BORDER="0"
|
||
|
SRC="img1335.png"
|
||
|
ALT="\begin{displaymath}
|
||
|
x[n] = s[n] - s[n-{N \over 2}]
|
||
|
\end{displaymath}">
|
||
|
</DIV>
|
||
|
<BR CLEAR="ALL">
|
||
|
<P></P>
|
||
|
equal to <IMG
|
||
|
WIDTH="27" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
||
|
SRC="img98.png"
|
||
|
ALT="$1/2$"> for the first half cycle (<IMG
|
||
|
WIDTH="104" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
||
|
SRC="img1336.png"
|
||
|
ALT="$0 <= n < N/2$">) and <IMG
|
||
|
WIDTH="39" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
||
|
SRC="img212.png"
|
||
|
ALT="$-1/2$"> for the rest.
|
||
|
We get the Fourier series by plugging in the Fourier series for <IMG
|
||
|
WIDTH="29" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
||
|
SRC="img1311.png"
|
||
|
ALT="$s[n]$"> twice:
|
||
|
<BR><P></P>
|
||
|
<DIV ALIGN="CENTER">
|
||
|
<!-- MATH
|
||
|
\begin{displaymath}
|
||
|
x[n] \approx {1 \over \pi} \left [
|
||
|
{\sin ( \omega n )}
|
||
|
+ {{\sin ( 2 \omega n)} \over 2}
|
||
|
+ {{\sin ( 3 \omega n)} \over 3}
|
||
|
+ \cdots
|
||
|
\right .
|
||
|
\end{displaymath}
|
||
|
-->
|
||
|
|
||
|
<IMG
|
||
|
WIDTH="327" HEIGHT="45" BORDER="0"
|
||
|
SRC="img1337.png"
|
||
|
ALT="\begin{displaymath}
|
||
|
x[n] \approx {1 \over \pi} \left [
|
||
|
{\sin ( \omega n )}
|
||
|
+ ...
|
||
|
...\over 2}
|
||
|
+ {{\sin ( 3 \omega n)} \over 3}
|
||
|
+ \cdots
|
||
|
\right .
|
||
|
\end{displaymath}">
|
||
|
</DIV>
|
||
|
<BR CLEAR="ALL">
|
||
|
<P></P>
|
||
|
<BR><P></P>
|
||
|
<DIV ALIGN="CENTER">
|
||
|
<!-- MATH
|
||
|
\begin{displaymath}
|
||
|
\left .
|
||
|
-{\sin ( \omega n )}
|
||
|
+ {{\sin ( 2 \omega n)} \over 2}
|
||
|
- {{\sin ( 3 \omega n)} \over 3}
|
||
|
\pm \cdots
|
||
|
\right ]
|
||
|
\end{displaymath}
|
||
|
-->
|
||
|
|
||
|
<IMG
|
||
|
WIDTH="272" HEIGHT="45" BORDER="0"
|
||
|
SRC="img1338.png"
|
||
|
ALT="\begin{displaymath}
|
||
|
\left .
|
||
|
-{\sin ( \omega n )}
|
||
|
+ {{\sin ( 2 \omega n)} \over 2}
|
||
|
- {{\sin ( 3 \omega n)} \over 3}
|
||
|
\pm \cdots
|
||
|
\right ]
|
||
|
\end{displaymath}">
|
||
|
</DIV>
|
||
|
<BR CLEAR="ALL">
|
||
|
<P></P>
|
||
|
<BR><P></P>
|
||
|
<DIV ALIGN="CENTER">
|
||
|
<!-- MATH
|
||
|
\begin{displaymath}
|
||
|
= {2 \over \pi} \left [
|
||
|
{\sin ( \omega n )}
|
||
|
+ {{\sin ( 3 \omega n)} \over 3}
|
||
|
+ {{\sin ( 5 \omega n)} \over 5}
|
||
|
+ \cdots
|
||
|
\right ]
|
||
|
\end{displaymath}
|
||
|
-->
|
||
|
|
||
|
<IMG
|
||
|
WIDTH="300" HEIGHT="45" BORDER="0"
|
||
|
SRC="img1339.png"
|
||
|
ALT="\begin{displaymath}
|
||
|
= {2 \over \pi} \left [
|
||
|
{\sin ( \omega n )}
|
||
|
+ {{\sin ( 3 ...
|
||
|
...\over 3}
|
||
|
+ {{\sin ( 5 \omega n)} \over 5}
|
||
|
+ \cdots
|
||
|
\right ]
|
||
|
\end{displaymath}">
|
||
|
</DIV>
|
||
|
<BR CLEAR="ALL">
|
||
|
<P></P>
|
||
|
|
||
|
<P>
|
||
|
The symmetric triangle wave (Figure <A HREF="#fig10.06">10.6</A>) given by
|
||
|
<BR><P></P>
|
||
|
<DIV ALIGN="CENTER">
|
||
|
<!-- MATH
|
||
|
\begin{displaymath}
|
||
|
x[n] = 8 p[n] - 8 p[n-{N \over 2}]
|
||
|
\end{displaymath}
|
||
|
-->
|
||
|
|
||
|
<IMG
|
||
|
WIDTH="173" HEIGHT="39" BORDER="0"
|
||
|
SRC="img1340.png"
|
||
|
ALT="\begin{displaymath}
|
||
|
x[n] = 8 p[n] - 8 p[n-{N \over 2}]
|
||
|
\end{displaymath}">
|
||
|
</DIV>
|
||
|
<BR CLEAR="ALL">
|
||
|
<P></P>
|
||
|
similarly comes to
|
||
|
<BR><P></P>
|
||
|
<DIV ALIGN="CENTER">
|
||
|
<!-- MATH
|
||
|
\begin{displaymath}
|
||
|
x[n] \approx {8 \over {{\pi^2}}} \left [
|
||
|
{\cos ( \omega n )}
|
||
|
+ {{\cos ( 3 \omega n)} \over 9}
|
||
|
+ {{\cos ( 5 \omega n)} \over 25}
|
||
|
+ \cdots
|
||
|
\right ]
|
||
|
\end{displaymath}
|
||
|
-->
|
||
|
|
||
|
<IMG
|
||
|
WIDTH="345" HEIGHT="45" BORDER="0"
|
||
|
SRC="img1341.png"
|
||
|
ALT="\begin{displaymath}
|
||
|
x[n] \approx {8 \over {{\pi^2}}} \left [
|
||
|
{\cos ( \omega n ...
|
||
|
...over 9}
|
||
|
+ {{\cos ( 5 \omega n)} \over 25}
|
||
|
+ \cdots
|
||
|
\right ]
|
||
|
\end{displaymath}">
|
||
|
</DIV>
|
||
|
<BR CLEAR="ALL">
|
||
|
<P></P>
|
||
|
|
||
|
<P>
|
||
|
<BR><HR>
|
||
|
<ADDRESS>
|
||
|
Miller Puckette
|
||
|
2006-12-30
|
||
|
</ADDRESS>
|
||
|
</BODY>
|
||
|
</HTML>
|