miller-book/node189.html

342 lines
8.9 KiB
HTML
Raw Normal View History

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 2002-2-1 (1.71)
original version by: Nikos Drakos, CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>Sawtooth wave</TITLE>
<META NAME="description" CONTENT="Sawtooth wave">
<META NAME="keywords" CONTENT="book">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META NAME="Generator" CONTENT="LaTeX2HTML v2002-2-1">
<META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">
<LINK REL="STYLESHEET" HREF="book.css">
<LINK REL="next" HREF="node190.html">
<LINK REL="previous" HREF="node188.html">
<LINK REL="up" HREF="node188.html">
<LINK REL="next" HREF="node190.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html3400"
HREF="node190.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="file:/usr/local/share/lib/latex2html/icons/next.png"></A>
<A NAME="tex2html3394"
HREF="node188.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="file:/usr/local/share/lib/latex2html/icons/up.png"></A>
<A NAME="tex2html3388"
HREF="node188.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="file:/usr/local/share/lib/latex2html/icons/prev.png"></A>
<A NAME="tex2html3396"
HREF="node4.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="file:/usr/local/share/lib/latex2html/icons/contents.png"></A>
<A NAME="tex2html3398"
HREF="node201.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="file:/usr/local/share/lib/latex2html/icons/index.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html3401"
HREF="node190.html">Parabolic wave</A>
<B> Up:</B> <A NAME="tex2html3395"
HREF="node188.html">Fourier series of the</A>
<B> Previous:</B> <A NAME="tex2html3389"
HREF="node188.html">Fourier series of the</A>
&nbsp; <B> <A NAME="tex2html3397"
HREF="node4.html">Contents</A></B>
&nbsp; <B> <A NAME="tex2html3399"
HREF="node201.html">Index</A></B>
<BR>
<BR>
<!--End of Navigation Panel-->
<H2><A NAME="SECTION001431000000000000000">
Sawtooth wave</A>
</H2>
First we apply this to the sawtooth wave <IMG
WIDTH="29" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img1311.png"
ALT="$s[n]$">. For <IMG
WIDTH="77" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="img1312.png"
ALT="$0 \le n &lt; N$"> we have:
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
s[n] - s[n-1] = -{1 \over N} +
\left \{
\begin{array}{ll}
{1} & {n = 0} \\
0 & \mbox{otherwise}
\end{array}
\right .
\end{displaymath}
-->
<IMG
WIDTH="279" HEIGHT="45" BORDER="0"
SRC="img1313.png"
ALT="\begin{displaymath}
s[n] - s[n-1] = -{1 \over N} +
\left \{
\begin{array}{ll}
{1} &amp; {n = 0} \\
0 &amp; \mbox{otherwise}
\end{array} \right .
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
Ignoring the constant offset of <IMG
WIDTH="30" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
SRC="img1314.png"
ALT="$-{1 \over N}$">, this gives an
<A NAME="14349"></A><I>impulse</I>,
zero everywhere except one sample per cycle. The summation in
the Fourier transform only has one term, and we get:
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
{\cal FT}\{ s[n] - s[n-1] \} (k) = 1 , \; k \neq 0, \; -N < k < N\
\end{displaymath}
-->
<IMG
WIDTH="344" HEIGHT="28" BORDER="0"
SRC="img1315.png"
ALT="\begin{displaymath}
{\cal FT}\{ s[n] - s[n-1] \} (k) = 1 , \; k \neq 0, \; -N &lt; k &lt; N\
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
We then apply the difference formula backward to get:
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
{\cal FT}\{ s[n] \} (k) \approx {1 \over {i \omega k}}
= {{-iN} \over {2 \pi k}}
\end{displaymath}
-->
<IMG
WIDTH="194" HEIGHT="39" BORDER="0"
SRC="img1316.png"
ALT="\begin{displaymath}
{\cal FT}\{ s[n] \} (k) \approx {1 \over {i \omega k}}
= {{-iN} \over {2 \pi k}}
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
valid for integer values of <IMG
WIDTH="12" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
SRC="img58.png"
ALT="$k$">, small compared to <IMG
WIDTH="18" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
SRC="img3.png"
ALT="$N$">, but with <IMG
WIDTH="41" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="img1317.png"
ALT="$k \neq 0$"> .
(To get the second
form of the expression we plugged in <!-- MATH
$\omega = 2 \pi / N$
-->
<IMG
WIDTH="74" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img1047.png"
ALT="$\omega=2\pi/N$"> and <IMG
WIDTH="63" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img1318.png"
ALT="$1/i = -i$">.)
<P>
This analysis doesn't give us the DC component <!-- MATH
${\cal FT}\{ s[n] \}(0)$
-->
<IMG
WIDTH="91" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img1319.png"
ALT="${\cal FT}\{ s[n] \}(0)$">,
because we would have had to divide by <IMG
WIDTH="41" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
SRC="img1092.png"
ALT="$k=0$">. Instead, we can evaluate the DC
term directly as the sum of all the points of the waveform: it's approximately
zero by symmetry.
<P>
To get a Fourier series in terms of familiar real-valued sine and cosine functions,
we combine corresponding terms for negative and positive values of <IMG
WIDTH="12" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
SRC="img58.png"
ALT="$k$">. The
first harmonic (<IMG
WIDTH="53" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="img1320.png"
ALT="$k = \pm 1$">) is:
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
{1 \over N}\left [
{\cal FT}\{ s[n] \} (1) \cdot {U^n} +
{\cal FT}\{ s[n] \} (-1) \cdot {U^{-n}}
\right ]
\end{displaymath}
-->
<IMG
WIDTH="313" HEIGHT="38" BORDER="0"
SRC="img1321.png"
ALT="\begin{displaymath}
{1 \over N}\left [
{\cal FT}\{ s[n] \} (1) \cdot {U^n} +
{\cal FT}\{ s[n] \} (-1) \cdot {U^{-n}}
\right ]
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
\approx {{-i} \over {2 \pi}} \left [ U^n - U^{-n} \right ]
\end{displaymath}
-->
<IMG
WIDTH="122" HEIGHT="39" BORDER="0"
SRC="img1322.png"
ALT="\begin{displaymath}
\approx {{-i} \over {2 \pi}} \left [ U^n - U^{-n} \right ]
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
= {{\sin ( \omega n)} \over {\pi}}
\end{displaymath}
-->
<IMG
WIDTH="69" HEIGHT="40" BORDER="0"
SRC="img1323.png"
ALT="\begin{displaymath}
= {{\sin ( \omega n)} \over {\pi}}
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
and similarly the <IMG
WIDTH="12" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
SRC="img58.png"
ALT="$k$">th harmonic is
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
{{\sin ( k \omega n)} \over {k \pi}}
\end{displaymath}
-->
<IMG
WIDTH="61" HEIGHT="40" BORDER="0"
SRC="img1324.png"
ALT="\begin{displaymath}
{{\sin ( k \omega n)} \over {k \pi}}
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
so the entire Fourier series is:
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
s[n] \approx {1 \over \pi} \left [
{\sin ( \omega n )}
+ {{\sin ( 2 \omega n)} \over 2}
+ {{\sin ( 3 \omega n)} \over 3}
+ \cdots
\right ]
\end{displaymath}
-->
<IMG
WIDTH="332" HEIGHT="45" BORDER="0"
SRC="img1325.png"
ALT="\begin{displaymath}
s[n] \approx {1 \over \pi} \left [
{\sin ( \omega n )}
+ ...
...\over 2}
+ {{\sin ( 3 \omega n)} \over 3}
+ \cdots
\right ]
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
<P>
<HR>
<!--Navigation Panel-->
<A NAME="tex2html3400"
HREF="node190.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="file:/usr/local/share/lib/latex2html/icons/next.png"></A>
<A NAME="tex2html3394"
HREF="node188.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="file:/usr/local/share/lib/latex2html/icons/up.png"></A>
<A NAME="tex2html3388"
HREF="node188.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="file:/usr/local/share/lib/latex2html/icons/prev.png"></A>
<A NAME="tex2html3396"
HREF="node4.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="file:/usr/local/share/lib/latex2html/icons/contents.png"></A>
<A NAME="tex2html3398"
HREF="node201.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="file:/usr/local/share/lib/latex2html/icons/index.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html3401"
HREF="node190.html">Parabolic wave</A>
<B> Up:</B> <A NAME="tex2html3395"
HREF="node188.html">Fourier series of the</A>
<B> Previous:</B> <A NAME="tex2html3389"
HREF="node188.html">Fourier series of the</A>
&nbsp; <B> <A NAME="tex2html3397"
HREF="node4.html">Contents</A></B>
&nbsp; <B> <A NAME="tex2html3399"
HREF="node201.html">Index</A></B>
<!--End of Navigation Panel-->
<ADDRESS>
Miller Puckette
2006-12-30
</ADDRESS>
</BODY>
</HTML>