miller-book/node137.html

283 lines
8.0 KiB
HTML
Raw Normal View History

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 2002-2-1 (1.71)
original version by: Nikos Drakos, CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>Real outputs from complex filters</TITLE>
<META NAME="description" CONTENT="Real outputs from complex filters">
<META NAME="keywords" CONTENT="book">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META NAME="Generator" CONTENT="LaTeX2HTML v2002-2-1">
<META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">
<LINK REL="STYLESHEET" HREF="book.css">
<LINK REL="next" HREF="node138.html">
<LINK REL="previous" HREF="node136.html">
<LINK REL="up" HREF="node132.html">
<LINK REL="next" HREF="node138.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html2623"
HREF="node138.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="file:/usr/local/share/lib/latex2html/icons/next.png"></A>
<A NAME="tex2html2617"
HREF="node132.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="file:/usr/local/share/lib/latex2html/icons/up.png"></A>
<A NAME="tex2html2611"
HREF="node136.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="file:/usr/local/share/lib/latex2html/icons/prev.png"></A>
<A NAME="tex2html2619"
HREF="node4.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="file:/usr/local/share/lib/latex2html/icons/contents.png"></A>
<A NAME="tex2html2621"
HREF="node201.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="file:/usr/local/share/lib/latex2html/icons/index.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html2624"
HREF="node138.html">Two recirculating filters for</A>
<B> Up:</B> <A NAME="tex2html2618"
HREF="node132.html">Elementary filters</A>
<B> Previous:</B> <A NAME="tex2html2612"
HREF="node136.html">Compound filters</A>
&nbsp; <B> <A NAME="tex2html2620"
HREF="node4.html">Contents</A></B>
&nbsp; <B> <A NAME="tex2html2622"
HREF="node201.html">Index</A></B>
<BR>
<BR>
<!--End of Navigation Panel-->
<H2><A NAME="SECTION001225000000000000000">
Real outputs from complex filters</A>
</H2>
<P>
In most applications, we start with a real-valued signal to filter and we need
a real-valued output, but in general, a compound filter with a transfer
function as above will give a complex-valued output. However, we can
construct filters with non-real-valued coefficients which nonetheless give
real-valued outputs, so that the analysis that we carry out using complex
numbers can be used to predict, explain, and control real-valued output
signals. We do this by pairing each elementary filter (with coefficient
<IMG
WIDTH="15" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
SRC="img880.png"
ALT="$P$"> or <IMG
WIDTH="16" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="img42.png"
ALT="$Q$">) with another having as its coefficient the complex conjugate
<IMG
WIDTH="15" HEIGHT="17" ALIGN="BOTTOM" BORDER="0"
SRC="img890.png"
ALT="$\overline{P}$"> or <IMG
WIDTH="16" HEIGHT="36" ALIGN="MIDDLE" BORDER="0"
SRC="img872.png"
ALT="$\overline{Q}$">.
<P>
For example, putting two non-recirculating filters, with coefficients <IMG
WIDTH="16" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="img42.png"
ALT="$Q$"> and
<IMG
WIDTH="16" HEIGHT="36" ALIGN="MIDDLE" BORDER="0"
SRC="img872.png"
ALT="$\overline{Q}$">, in series gives a transfer function equal to:
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
H(Z) = (1 - {Q}{Z^{-1}}) \cdot (1 - \overline{Q}{Z^{-1}})
\end{displaymath}
-->
<IMG
WIDTH="233" HEIGHT="28" BORDER="0"
SRC="img891.png"
ALT="\begin{displaymath}
H(Z) = (1 - {Q}{Z^{-1}}) \cdot (1 - \overline{Q}{Z^{-1}})
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
which has the property that:
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
H(\overline{Z}) = \overline{H(Z)}
\end{displaymath}
-->
<IMG
WIDTH="99" HEIGHT="28" BORDER="0"
SRC="img892.png"
ALT="\begin{displaymath}
H(\overline{Z}) = \overline{H(Z)}
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
Now if we put any real-valued sinusoid:
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
{X_n} = 2 \, \mathrm{re}(A{Z^n}) = A{Z^n} + \overline{A}
{{\overline{Z}}^n}
\end{displaymath}
-->
<IMG
WIDTH="217" HEIGHT="28" BORDER="0"
SRC="img893.png"
ALT="\begin{displaymath}
{X_n} = 2 \, \mathrm{re}(A{Z^n}) = A{Z^n} + \overline{A}
{{\overline{Z}}^n}
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
we get out:
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
A \cdot H(Z) \cdot {Z^n} +
\overline{A} \cdot \overline{H(Z)} \cdot {{\overline{Z}}^n}
\end{displaymath}
-->
<IMG
WIDTH="207" HEIGHT="28" BORDER="0"
SRC="img894.png"
ALT="\begin{displaymath}
A \cdot H(Z) \cdot {Z^n} +
\overline{A} \cdot \overline{H(Z)} \cdot {{\overline{Z}}^n}
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
which, by inspection, is another real sinusoid.
Here we're using two properties of complex conjugates. First, you can
add and multiply them at will:
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
\overline{A+B} = \overline{A} + \overline{B}
\end{displaymath}
-->
<IMG
WIDTH="110" HEIGHT="25" BORDER="0"
SRC="img895.png"
ALT="\begin{displaymath}
\overline{A+B} = \overline{A} + \overline{B}
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
\overline{AB} = \overline{A} \cdot \overline{B}
\end{displaymath}
-->
<IMG
WIDTH="82" HEIGHT="24" BORDER="0"
SRC="img896.png"
ALT="\begin{displaymath}
\overline{AB} = \overline{A} \cdot \overline{B}
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
and second, anything plus its complex conjugate is real, and is in fact
twice its real part:
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
A + \overline{A} = 2 \, \mathrm{re} (A)
\end{displaymath}
-->
<IMG
WIDTH="112" HEIGHT="28" BORDER="0"
SRC="img897.png"
ALT="\begin{displaymath}
A + \overline{A} = 2 \, \mathrm{re} (A)
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
This result for two conjugate filters extends to any compound filter; in
general, we always get a real-valued output from a real-valued input if we
arrange that each coefficient <IMG
WIDTH="21" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="img898.png"
ALT="$Q_i$"> and <IMG
WIDTH="19" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="img899.png"
ALT="$P_i$"> in the compound filter is
either real-valued, or else appears in a pair with its complex conjugate.
<P>
<HR>
<!--Navigation Panel-->
<A NAME="tex2html2623"
HREF="node138.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="file:/usr/local/share/lib/latex2html/icons/next.png"></A>
<A NAME="tex2html2617"
HREF="node132.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="file:/usr/local/share/lib/latex2html/icons/up.png"></A>
<A NAME="tex2html2611"
HREF="node136.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="file:/usr/local/share/lib/latex2html/icons/prev.png"></A>
<A NAME="tex2html2619"
HREF="node4.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="file:/usr/local/share/lib/latex2html/icons/contents.png"></A>
<A NAME="tex2html2621"
HREF="node201.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="file:/usr/local/share/lib/latex2html/icons/index.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html2624"
HREF="node138.html">Two recirculating filters for</A>
<B> Up:</B> <A NAME="tex2html2618"
HREF="node132.html">Elementary filters</A>
<B> Previous:</B> <A NAME="tex2html2612"
HREF="node136.html">Compound filters</A>
&nbsp; <B> <A NAME="tex2html2620"
HREF="node4.html">Contents</A></B>
&nbsp; <B> <A NAME="tex2html2622"
HREF="node201.html">Index</A></B>
<!--End of Navigation Panel-->
<ADDRESS>
Miller Puckette
2006-12-30
</ADDRESS>
</BODY>
</HTML>