2022-04-12 22:02:59 -03:00
|
|
|
<!DOCTYPE html>
|
2022-04-12 21:54:18 -03:00
|
|
|
|
|
|
|
<!--Converted with LaTeX2HTML 2002-2-1 (1.71)
|
|
|
|
original version by: Nikos Drakos, CBLU, University of Leeds
|
|
|
|
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
|
|
|
|
* with significant contributions from:
|
|
|
|
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
|
|
|
|
<HTML>
|
|
|
|
<HEAD>
|
2022-04-12 22:02:59 -03:00
|
|
|
|
|
|
|
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
|
|
|
|
|
|
|
|
2022-04-12 21:54:18 -03:00
|
|
|
<TITLE>Movable ring modulation</TITLE>
|
|
|
|
<META NAME="description" CONTENT="Movable ring modulation">
|
|
|
|
<META NAME="keywords" CONTENT="book">
|
|
|
|
<META NAME="resource-type" CONTENT="document">
|
|
|
|
<META NAME="distribution" CONTENT="global">
|
|
|
|
|
|
|
|
<META NAME="Generator" CONTENT="LaTeX2HTML v2002-2-1">
|
|
|
|
<META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">
|
|
|
|
|
|
|
|
<LINK REL="STYLESHEET" HREF="book.css">
|
|
|
|
|
|
|
|
<LINK REL="next" HREF="node96.html">
|
|
|
|
<LINK REL="previous" HREF="node91.html">
|
|
|
|
<LINK REL="up" HREF="node89.html">
|
|
|
|
<LINK REL="next" HREF="node96.html">
|
|
|
|
</HEAD>
|
|
|
|
|
|
|
|
<BODY >
|
|
|
|
<!--Navigation Panel-->
|
|
|
|
<A NAME="tex2html1967"
|
|
|
|
HREF="node96.html">
|
|
|
|
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
|
2022-04-12 22:02:59 -03:00
|
|
|
SRC="next.png"></A>
|
2022-04-12 21:54:18 -03:00
|
|
|
<A NAME="tex2html1961"
|
|
|
|
HREF="node89.html">
|
|
|
|
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
|
2022-04-12 22:02:59 -03:00
|
|
|
SRC="up.png"></A>
|
2022-04-12 21:54:18 -03:00
|
|
|
<A NAME="tex2html1955"
|
|
|
|
HREF="node94.html">
|
|
|
|
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
|
2022-04-12 22:02:59 -03:00
|
|
|
SRC="prev.png"></A>
|
2022-04-12 21:54:18 -03:00
|
|
|
<A NAME="tex2html1963"
|
|
|
|
HREF="node4.html">
|
|
|
|
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
|
2022-04-12 22:02:59 -03:00
|
|
|
SRC="contents.png"></A>
|
2022-04-12 21:54:18 -03:00
|
|
|
<A NAME="tex2html1965"
|
|
|
|
HREF="node201.html">
|
|
|
|
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
|
2022-04-12 22:02:59 -03:00
|
|
|
SRC="index.png"></A>
|
2022-04-12 21:54:18 -03:00
|
|
|
<BR>
|
|
|
|
<B> Next:</B> <A NAME="tex2html1968"
|
|
|
|
HREF="node96.html">Phase-aligned formant (PAF) generator</A>
|
|
|
|
<B> Up:</B> <A NAME="tex2html1962"
|
|
|
|
HREF="node89.html">Designer spectra</A>
|
|
|
|
<B> Previous:</B> <A NAME="tex2html1956"
|
|
|
|
HREF="node94.html">Resulting spectra</A>
|
|
|
|
<B> <A NAME="tex2html1964"
|
|
|
|
HREF="node4.html">Contents</A></B>
|
|
|
|
<B> <A NAME="tex2html1966"
|
|
|
|
HREF="node201.html">Index</A></B>
|
|
|
|
<BR>
|
|
|
|
<BR>
|
|
|
|
<!--End of Navigation Panel-->
|
|
|
|
|
|
|
|
<H1><A NAME="SECTION001030000000000000000"></A>
|
|
|
|
<A NAME="sect6.carrier"></A>
|
|
|
|
<BR>
|
|
|
|
Movable ring modulation
|
|
|
|
</H1>
|
|
|
|
|
|
|
|
<P>
|
|
|
|
We turn now to the carrier signal, seeking ways to make it more controllable.
|
|
|
|
We would particularly like to be able to slide the spectral energy continuously
|
|
|
|
up and
|
|
|
|
down in frequency. Simply ramping the frequency of the carrier oscillator
|
|
|
|
will not accomplish this, since the spectra won't be harmonic except when the
|
|
|
|
carrier is an integer multiple of the fundamental frequency.
|
|
|
|
|
|
|
|
<P>
|
|
|
|
In the stretched wavetable approach we can accomplish this simply by sampling
|
|
|
|
a sinusoid and transposing it to the desired ``pitch". The transposed pitch
|
|
|
|
isn't heard as a periodicity since the wavetable itself is read periodically at
|
|
|
|
the fundamental frequency. Instead, the sinusoid is transposed as a spectral
|
|
|
|
envelope.
|
|
|
|
|
|
|
|
<P>
|
|
|
|
Figure <A HREF="#fig06.07">6.7</A> shows a carrier signal produced in this way, tuned to
|
|
|
|
produce a formant centered at 1.5 times the fundamental frequency. The signal
|
|
|
|
has no outright discontinuity at the phase wraparound frequency, but it does
|
|
|
|
have a discontinuity in slope, which, if not removed by applying a suitable
|
|
|
|
modulation signal, would have very audible high-frequency components.
|
|
|
|
|
|
|
|
<P>
|
|
|
|
|
|
|
|
<DIV ALIGN="CENTER"><A NAME="fig06.07"></A><A NAME="6894"></A>
|
|
|
|
<TABLE>
|
|
|
|
<CAPTION ALIGN="BOTTOM"><STRONG>Figure 6.7:</STRONG>
|
|
|
|
Waveform for a wavetable-based carrier signal tuned to 1.5 times
|
|
|
|
the fundamental. Two periods are shown.</CAPTION>
|
|
|
|
<TR><TD><IMG
|
|
|
|
WIDTH="353" HEIGHT="109" BORDER="0"
|
|
|
|
SRC="img585.png"
|
|
|
|
ALT="\begin{figure}\psfig{file=figs/fig06.07.ps}\end{figure}"></TD></TR>
|
|
|
|
</TABLE>
|
|
|
|
</DIV>
|
|
|
|
|
|
|
|
<P>
|
|
|
|
Using this idea we can make a complete description of how to use the block
|
|
|
|
diagram of Figure <A HREF="node90.html#fig06.03">6.3</A> to produce a desired formant. The wavetable
|
|
|
|
lookup on the left hand side would hold a sinusoid (placed symmetrically so
|
|
|
|
that the phase is zero at the center of the wavetable). The right-hand-side
|
|
|
|
wavetable would hold a Hann or other appropriate window function.
|
|
|
|
If we desire the fundamental frequency to be <IMG
|
|
|
|
WIDTH="14" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
|
|
|
SRC="img27.png"
|
|
|
|
ALT="$\omega $">, the
|
|
|
|
formant center frequency to be <IMG
|
|
|
|
WIDTH="19" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
|
|
|
SRC="img464.png"
|
|
|
|
ALT="$\omega_c$">, and the bandwidth to be <IMG
|
|
|
|
WIDTH="19" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
|
|
|
SRC="img586.png"
|
|
|
|
ALT="$\omega_b$">,
|
|
|
|
we set the ``stretch" parameter to the <I>center frequency quotient</I>
|
|
|
|
defined as <!-- MATH
|
|
|
|
${\omega_c}/\omega$
|
|
|
|
-->
|
|
|
|
<IMG
|
|
|
|
WIDTH="38" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
|
|
|
SRC="img587.png"
|
|
|
|
ALT="${\omega_c}/\omega$">, and the index of
|
|
|
|
modulation to the <I>bandwidth quotient</I>, <!-- MATH
|
|
|
|
${\omega_b}/\omega$
|
|
|
|
-->
|
|
|
|
<IMG
|
|
|
|
WIDTH="38" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
|
|
|
SRC="img588.png"
|
|
|
|
ALT="${\omega_b}/\omega$">.
|
|
|
|
|
|
|
|
<P>
|
|
|
|
The output signal is simply a sample of a cosine wave at the
|
|
|
|
desired center frequency, repeated at the (unrelated in general) desired
|
|
|
|
period, and windowed to take out the discontinuities at period boundaries.
|
|
|
|
|
|
|
|
<P>
|
|
|
|
Although we aren't able to derive this result yet (we will need Fourier
|
|
|
|
analysis), it will turn out that, in the main lobe of the formant, the phases
|
|
|
|
are all zero at the center of the waveform (i.e., the components are all
|
|
|
|
cosines if we consider the phase to be zero at the center of
|
|
|
|
the waveform). This means we may
|
|
|
|
superpose any number of these formants to build a more complex spectrum and the
|
|
|
|
amplitudes of the partials will combine by addition. (The sidelobes don't
|
|
|
|
behave so well: they are alternately of opposite sign and will produce
|
|
|
|
cancellation patterns; but we can often just shrug them off as a small,
|
|
|
|
uncontrollable, residual signal.)
|
|
|
|
|
|
|
|
<P>
|
|
|
|
This method leads to an interesting generalization, which is to take a sequence
|
|
|
|
of recorded wavetables, align all their component phases to those of
|
|
|
|
cosines, and use them in place of the cosine function as the carrier signal.
|
|
|
|
The phase alignment is necessary to allow coherent cross-fading between
|
|
|
|
samples so that the spectral envelope can change smoothly. If, for example, we
|
|
|
|
use successive snippets of a vocal sample as input, we get a strikingly
|
|
|
|
effective vocoder; see Section <A HREF="node177.html#sect9-bash">9.6</A>.
|
|
|
|
|
|
|
|
<P>
|
|
|
|
Another technique for making carrier signals that can be slid continuously
|
|
|
|
up and down in frequency while maintaining a fundamental frequency
|
|
|
|
is simply to cross-fade between harmonics. The carrier signal is then:
|
|
|
|
<BR><P></P>
|
|
|
|
<DIV ALIGN="CENTER">
|
|
|
|
<!-- MATH
|
|
|
|
\begin{displaymath}
|
|
|
|
c(\phi) = c(\omega n) = p \cos( k \omega n) + q \cos( (k+1) \omega n)
|
|
|
|
\end{displaymath}
|
|
|
|
-->
|
|
|
|
|
|
|
|
<IMG
|
|
|
|
WIDTH="313" HEIGHT="28" BORDER="0"
|
|
|
|
SRC="img589.png"
|
|
|
|
ALT="\begin{displaymath}
|
|
|
|
c(\phi) = c(\omega n) = p \cos( k \omega n) + q \cos( (k+1) \omega n)
|
|
|
|
\end{displaymath}">
|
|
|
|
</DIV>
|
|
|
|
<BR CLEAR="ALL">
|
|
|
|
<P></P>
|
|
|
|
where <IMG
|
|
|
|
WIDTH="67" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
|
|
|
SRC="img590.png"
|
|
|
|
ALT="$p + q = 1$"> and <IMG
|
|
|
|
WIDTH="12" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
|
|
|
|
SRC="img58.png"
|
|
|
|
ALT="$k$"> is an integer, all three chosen so that
|
|
|
|
<BR><P></P>
|
|
|
|
<DIV ALIGN="CENTER">
|
|
|
|
<!-- MATH
|
|
|
|
\begin{displaymath}
|
|
|
|
(k + q) * {\omega} = {\omega_c}
|
|
|
|
\end{displaymath}
|
|
|
|
-->
|
|
|
|
|
|
|
|
<IMG
|
|
|
|
WIDTH="109" HEIGHT="28" BORDER="0"
|
|
|
|
SRC="img591.png"
|
|
|
|
ALT="\begin{displaymath}
|
|
|
|
(k + q) * {\omega} = {\omega_c}
|
|
|
|
\end{displaymath}">
|
|
|
|
</DIV>
|
|
|
|
<BR CLEAR="ALL">
|
|
|
|
<P></P>
|
|
|
|
so that the spectral center of mass of the two cosines is placed at
|
|
|
|
<IMG
|
|
|
|
WIDTH="19" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
|
|
|
SRC="img464.png"
|
|
|
|
ALT="$\omega_c$">. (Note that we make the amplitudes of the two cosines add to one
|
|
|
|
instead of setting the total power to one; we do this because the modulator
|
|
|
|
will operate phase-coherently on them.) To accomplish this we simply
|
|
|
|
set <IMG
|
|
|
|
WIDTH="12" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
|
|
|
|
SRC="img58.png"
|
|
|
|
ALT="$k$"> and <IMG
|
|
|
|
WIDTH="11" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
|
|
|
SRC="img592.png"
|
|
|
|
ALT="$q$"> to be the integer and fractional part, respectively,
|
|
|
|
of the center frequency quotient <!-- MATH
|
|
|
|
$\omega_c/\omega$
|
|
|
|
-->
|
|
|
|
<IMG
|
|
|
|
WIDTH="38" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
|
|
|
SRC="img593.png"
|
|
|
|
ALT="$\omega_c/\omega$">.
|
|
|
|
|
|
|
|
<P>
|
|
|
|
The simplest way of making a control interface for this synthesis technique
|
|
|
|
would be to use
|
|
|
|
ramps to update <IMG
|
|
|
|
WIDTH="14" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
|
|
|
SRC="img27.png"
|
|
|
|
ALT="$\omega $"> and <IMG
|
|
|
|
WIDTH="19" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
|
|
|
SRC="img464.png"
|
|
|
|
ALT="$\omega_c$">, and then to compute <IMG
|
|
|
|
WIDTH="11" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
|
|
|
SRC="img592.png"
|
|
|
|
ALT="$q$"> and <IMG
|
|
|
|
WIDTH="12" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
|
|
|
|
SRC="img58.png"
|
|
|
|
ALT="$k$">
|
|
|
|
as audio signals from the ramped, smoothly varying <IMG
|
|
|
|
WIDTH="14" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
|
|
|
SRC="img27.png"
|
|
|
|
ALT="$\omega $"> and <IMG
|
|
|
|
WIDTH="19" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
|
|
|
SRC="img464.png"
|
|
|
|
ALT="$\omega_c$">.
|
|
|
|
Oddly enough, despite the fact that <IMG
|
|
|
|
WIDTH="12" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
|
|
|
|
SRC="img58.png"
|
|
|
|
ALT="$k$">, <IMG
|
|
|
|
WIDTH="11" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
|
|
|
SRC="img57.png"
|
|
|
|
ALT="$p$">, and <IMG
|
|
|
|
WIDTH="11" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
|
|
|
SRC="img592.png"
|
|
|
|
ALT="$q$"> are discontinuous
|
|
|
|
functions of <!-- MATH
|
|
|
|
$\omega_c/\omega$
|
|
|
|
-->
|
|
|
|
<IMG
|
|
|
|
WIDTH="38" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
|
|
|
SRC="img593.png"
|
|
|
|
ALT="$\omega_c/\omega$">, the carrier <IMG
|
|
|
|
WIDTH="32" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
|
|
|
SRC="img594.png"
|
|
|
|
ALT="$c(\phi)$"> turns out to vary
|
|
|
|
continuously with <!-- MATH
|
|
|
|
$\omega_c/\omega$
|
|
|
|
-->
|
|
|
|
<IMG
|
|
|
|
WIDTH="38" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
|
|
|
SRC="img593.png"
|
|
|
|
ALT="$\omega_c/\omega$">, and so if the desired center frequency
|
|
|
|
<IMG
|
|
|
|
WIDTH="19" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
|
|
|
SRC="img464.png"
|
|
|
|
ALT="$\omega_c$"> is ramped from value to value the result is a continuous sweep in
|
|
|
|
center frequency. However, more work is needed if discontinuous changes
|
|
|
|
in center frequency are needed. This is not an unreasonable thing to wish
|
|
|
|
for, being analogous to changing the frequency of an oscillator discontinuously.
|
|
|
|
|
|
|
|
<P>
|
|
|
|
There turns out to be a good way to accomodate this.
|
|
|
|
The trick to updating <IMG
|
|
|
|
WIDTH="12" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
|
|
|
|
SRC="img58.png"
|
|
|
|
ALT="$k$"> and <IMG
|
|
|
|
WIDTH="11" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
|
|
|
SRC="img592.png"
|
|
|
|
ALT="$q$"> is to note that <IMG
|
|
|
|
WIDTH="61" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
|
|
|
SRC="img595.png"
|
|
|
|
ALT="$c(\phi) = 1$"> whenever <IMG
|
|
|
|
WIDTH="13" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
|
|
|
|
SRC="img77.png"
|
|
|
|
ALT="$\phi$">
|
|
|
|
is a multiple of <IMG
|
|
|
|
WIDTH="21" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
|
|
|
SRC="img16.png"
|
|
|
|
ALT="$2\pi $">, regardless of the choice of <IMG
|
|
|
|
WIDTH="12" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
|
|
|
|
SRC="img58.png"
|
|
|
|
ALT="$k$">, <IMG
|
|
|
|
WIDTH="11" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
|
|
|
SRC="img57.png"
|
|
|
|
ALT="$p$">, and <IMG
|
|
|
|
WIDTH="11" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
|
|
|
SRC="img592.png"
|
|
|
|
ALT="$q$"> as long
|
|
|
|
as <IMG
|
|
|
|
WIDTH="67" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
|
|
|
SRC="img590.png"
|
|
|
|
ALT="$p + q = 1$">. Hence, we may make discontinuous changes in <IMG
|
|
|
|
WIDTH="12" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
|
|
|
|
SRC="img58.png"
|
|
|
|
ALT="$k$">, <IMG
|
|
|
|
WIDTH="11" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
|
|
|
SRC="img57.png"
|
|
|
|
ALT="$p$">, and <IMG
|
|
|
|
WIDTH="11" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
|
|
|
SRC="img592.png"
|
|
|
|
ALT="$q$"> once
|
|
|
|
per period (right when the phase is a multiple of <IMG
|
|
|
|
WIDTH="21" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
|
|
|
SRC="img16.png"
|
|
|
|
ALT="$2\pi $">), without making
|
|
|
|
discontinuities in the carrier signal.
|
|
|
|
|
|
|
|
<P>
|
|
|
|
In the specific case of FM, if we wish we can now go back and modify the
|
|
|
|
original formulation to:
|
|
|
|
<BR><P></P>
|
|
|
|
<DIV ALIGN="CENTER">
|
|
|
|
<!-- MATH
|
|
|
|
\begin{displaymath}
|
|
|
|
p \cos ( n {\omega_2} t + r \cos ({\omega_1} t)) +
|
|
|
|
\end{displaymath}
|
|
|
|
-->
|
|
|
|
|
|
|
|
<IMG
|
|
|
|
WIDTH="176" HEIGHT="28" BORDER="0"
|
|
|
|
SRC="img596.png"
|
|
|
|
ALT="\begin{displaymath}
|
|
|
|
p \cos ( n {\omega_2} t + r \cos ({\omega_1} t)) +
|
|
|
|
\end{displaymath}">
|
|
|
|
</DIV>
|
|
|
|
<BR CLEAR="ALL">
|
|
|
|
<P></P> <BR><P></P>
|
|
|
|
<DIV ALIGN="CENTER">
|
|
|
|
<!-- MATH
|
|
|
|
\begin{displaymath}
|
|
|
|
+ q \cos ( (n+1) {\omega_2} t + r \cos ({\omega_1} t))
|
|
|
|
\end{displaymath}
|
|
|
|
-->
|
|
|
|
|
|
|
|
<IMG
|
|
|
|
WIDTH="212" HEIGHT="28" BORDER="0"
|
|
|
|
SRC="img597.png"
|
|
|
|
ALT="\begin{displaymath}
|
|
|
|
+ q \cos ( (n+1) {\omega_2} t + r \cos ({\omega_1} t))
|
|
|
|
\end{displaymath}">
|
|
|
|
</DIV>
|
|
|
|
<BR CLEAR="ALL">
|
|
|
|
<P></P>
|
|
|
|
This allows us to add glissandi (which are heard as dipthongs) to Chowning's
|
|
|
|
original phase-modulation-based vocal synthesis technique.
|
|
|
|
|
|
|
|
<P>
|
|
|
|
<HR>
|
|
|
|
<!--Navigation Panel-->
|
|
|
|
<A NAME="tex2html1967"
|
|
|
|
HREF="node96.html">
|
|
|
|
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
|
2022-04-12 22:02:59 -03:00
|
|
|
SRC="next.png"></A>
|
2022-04-12 21:54:18 -03:00
|
|
|
<A NAME="tex2html1961"
|
|
|
|
HREF="node89.html">
|
|
|
|
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
|
2022-04-12 22:02:59 -03:00
|
|
|
SRC="up.png"></A>
|
2022-04-12 21:54:18 -03:00
|
|
|
<A NAME="tex2html1955"
|
|
|
|
HREF="node94.html">
|
|
|
|
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
|
2022-04-12 22:02:59 -03:00
|
|
|
SRC="prev.png"></A>
|
2022-04-12 21:54:18 -03:00
|
|
|
<A NAME="tex2html1963"
|
|
|
|
HREF="node4.html">
|
|
|
|
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
|
2022-04-12 22:02:59 -03:00
|
|
|
SRC="contents.png"></A>
|
2022-04-12 21:54:18 -03:00
|
|
|
<A NAME="tex2html1965"
|
|
|
|
HREF="node201.html">
|
|
|
|
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
|
2022-04-12 22:02:59 -03:00
|
|
|
SRC="index.png"></A>
|
2022-04-12 21:54:18 -03:00
|
|
|
<BR>
|
|
|
|
<B> Next:</B> <A NAME="tex2html1968"
|
|
|
|
HREF="node96.html">Phase-aligned formant (PAF) generator</A>
|
|
|
|
<B> Up:</B> <A NAME="tex2html1962"
|
|
|
|
HREF="node89.html">Designer spectra</A>
|
|
|
|
<B> Previous:</B> <A NAME="tex2html1956"
|
|
|
|
HREF="node94.html">Resulting spectra</A>
|
|
|
|
<B> <A NAME="tex2html1964"
|
|
|
|
HREF="node4.html">Contents</A></B>
|
|
|
|
<B> <A NAME="tex2html1966"
|
|
|
|
HREF="node201.html">Index</A></B>
|
|
|
|
<!--End of Navigation Panel-->
|
|
|
|
<ADDRESS>
|
|
|
|
Miller Puckette
|
|
|
|
2006-12-30
|
|
|
|
</ADDRESS>
|
|
|
|
</BODY>
|
|
|
|
</HTML>
|