miller-book/node8.html

273 lines
7.9 KiB
HTML
Raw Normal View History

<!DOCTYPE html>
<!--Converted with LaTeX2HTML 2002-2-1 (1.71)
original version by: Nikos Drakos, CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<TITLE>Measures of Amplitude</TITLE>
<META NAME="description" CONTENT="Measures of Amplitude">
<META NAME="keywords" CONTENT="book">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META NAME="Generator" CONTENT="LaTeX2HTML v2002-2-1">
<META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">
<LINK REL="STYLESHEET" HREF="book.css">
<LINK REL="next" HREF="node9.html">
<LINK REL="previous" HREF="node7.html">
<LINK REL="up" HREF="node7.html">
<LINK REL="next" HREF="node9.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html665"
HREF="node9.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next.png"></A>
<A NAME="tex2html659"
HREF="node7.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up.png"></A>
<A NAME="tex2html653"
HREF="node7.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="prev.png"></A>
<A NAME="tex2html661"
HREF="node4.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents.png"></A>
<A NAME="tex2html663"
HREF="node201.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html666"
HREF="node9.html">Units of Amplitude</A>
<B> Up:</B> <A NAME="tex2html660"
HREF="node7.html">Sinusoids, amplitude and frequency</A>
<B> Previous:</B> <A NAME="tex2html654"
HREF="node7.html">Sinusoids, amplitude and frequency</A>
&nbsp; <B> <A NAME="tex2html662"
HREF="node4.html">Contents</A></B>
&nbsp; <B> <A NAME="tex2html664"
HREF="node201.html">Index</A></B>
<BR>
<BR>
<!--End of Navigation Panel-->
<H1><A NAME="SECTION00510000000000000000"></A>
<A NAME="sect1.amplitude"></A>
<BR>
Measures of Amplitude
</H1>
<P>
The most fundamental property of a digital audio signal is its
<A NAME="1038"></A>amplitude. Unfortunately, a signal's amplitude has no one canonical
definition.
Strictly speaking, all the samples in a digital audio signal are themselves
amplitudes, and we also spoke of the amplitude <IMG
WIDTH="11" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
SRC="img4.png"
ALT="$a$"> of the sinusoid as a whole.
It is useful to have measures
of amplitude for digital audio signals in general. Amplitude
is best thought of as applying to a
<A NAME="1039"></A><I>window</I>, a fixed range of samples of the signal. For instance, the
window starting at sample <IMG
WIDTH="20" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
SRC="img86.png"
ALT="$M$"> of length <IMG
WIDTH="18" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
SRC="img3.png"
ALT="$N$"> of an audio signal <IMG
WIDTH="31" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img80.png"
ALT="$x[n]$"> consists of the
samples,
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
x[M], x[M+1], \ldots, x[M+N-1]
\end{displaymath}
-->
<IMG
WIDTH="234" HEIGHT="28" BORDER="0"
SRC="img87.png"
ALT="\begin{displaymath}
x[M], x[M+1], \ldots, x[M+N-1]
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
The two most frequently used measures of amplitude are the
<A NAME="1041"></A><A NAME="1042"></A><I>peak amplitude</I>, which is simply the greatest sample (in absolute value)
over the window:
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
{A_{\mathrm{peak}}} \{x[n]\} = \max | x[n] | ,
\hspace{0.3in}n = M, \ldots, M+N-1
\end{displaymath}
-->
<IMG
WIDTH="373" HEIGHT="29" BORDER="0"
SRC="img88.png"
ALT="\begin{displaymath}
{A_{\mathrm{peak}}} \{x[n]\} = \max \vert x[n] \vert ,
\hspace{0.3in}n = M, \ldots, M+N-1
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
and the
<A NAME="1046"></A><I>root mean square</I> (RMS) amplitude:
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
{A_{\mathrm{RMS}}} \{x[n]\} = \sqrt{P\{x[n]\}}
\end{displaymath}
-->
<IMG
WIDTH="177" HEIGHT="28" BORDER="0"
SRC="img89.png"
ALT="\begin{displaymath}
{A_{\mathrm{RMS}}} \{x[n]\} = \sqrt{P\{x[n]\}}
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
where <IMG
WIDTH="59" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img90.png"
ALT="$P\{x[n]\}$"> is the mean
<A NAME="1050"></A><I>power</I>, defined as:
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
{P\{x[n]\}} = {1 \over N} \left (
{{|x[M]|} ^2} + \cdots + {{|x[M+N-1]|} ^2}
\right )
\end{displaymath}
-->
<IMG
WIDTH="335" HEIGHT="38" BORDER="0"
SRC="img91.png"
ALT="\begin{displaymath}
{P\{x[n]\}} = {1 \over N} \left (
{{\vert x[M]\vert} ^2} + \cdots + {{\vert x[M+N-1]\vert} ^2}
\right )
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
(In this last formula, the absolute value signs aren't necessary at the moment
since we're working on real-valued signals, but they will become important
later when we consider complex-valued signals.) Neither the peak nor the RMS
amplitude of any signal can be negative, and either one can be exactly zero
only if the signal itself is zero for all <IMG
WIDTH="13" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
SRC="img75.png"
ALT="$n$"> in the window.
<P>
The RMS amplitude of a signal may equal the peak amplitude but never exceeds
it; and it may be as little as <IMG
WIDTH="47" HEIGHT="38" ALIGN="MIDDLE" BORDER="0"
SRC="img92.png"
ALT="$1 / {\sqrt N}$"> times the peak amplitude, but
never less than that.
<P>
<DIV ALIGN="CENTER"><A NAME="fig01.02"></A><A NAME="1059"></A>
<TABLE>
<CAPTION ALIGN="BOTTOM"><STRONG>Figure 1.2:</STRONG>
Root mean square (RMS) and peak amplitudes of signals compared.
For a sinusoid (part a), the peak amplitude is higher than RMS by a factor of
<IMG
WIDTH="24" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
SRC="img1.png"
ALT="$\sqrt 2$">.</CAPTION>
<TR><TD><IMG
WIDTH="362" HEIGHT="306" BORDER="0"
SRC="img93.png"
ALT="\begin{figure}\psfig{file=figs/fig01.02.ps}\end{figure}"></TD></TR>
</TABLE>
</DIV>
<P>
Under reasonable conditions--if the window contains at least several periods and
if the angular frequency is well under one radian per sample--the peak
amplitude of the sinusoid of Page <A HREF="node7.html#eq-realsinusoid"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]"
SRC="crossref.png"></A>
is approximately <IMG
WIDTH="11" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
SRC="img4.png"
ALT="$a$"> and its RMS amplitude
about <IMG
WIDTH="41" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
SRC="img94.png"
ALT="$a / {\sqrt 2}$">. Figure <A HREF="#fig01.02">1.2</A> shows the peak and RMS amplitudes
of two digital audio signals.
<P>
<HR>
<!--Navigation Panel-->
<A NAME="tex2html665"
HREF="node9.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next.png"></A>
<A NAME="tex2html659"
HREF="node7.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up.png"></A>
<A NAME="tex2html653"
HREF="node7.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="prev.png"></A>
<A NAME="tex2html661"
HREF="node4.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents.png"></A>
<A NAME="tex2html663"
HREF="node201.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html666"
HREF="node9.html">Units of Amplitude</A>
<B> Up:</B> <A NAME="tex2html660"
HREF="node7.html">Sinusoids, amplitude and frequency</A>
<B> Previous:</B> <A NAME="tex2html654"
HREF="node7.html">Sinusoids, amplitude and frequency</A>
&nbsp; <B> <A NAME="tex2html662"
HREF="node4.html">Contents</A></B>
&nbsp; <B> <A NAME="tex2html664"
HREF="node201.html">Index</A></B>
<!--End of Navigation Panel-->
<ADDRESS>
Miller Puckette
2006-12-30
</ADDRESS>
</BODY>
</HTML>