miller-book/node190.html

272 lines
5.8 KiB
HTML
Raw Normal View History

<!DOCTYPE html>
<!--Converted with LaTeX2HTML 2002-2-1 (1.71)
original version by: Nikos Drakos, CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<TITLE>Parabolic wave</TITLE>
<META NAME="description" CONTENT="Parabolic wave">
<META NAME="keywords" CONTENT="book">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META NAME="Generator" CONTENT="LaTeX2HTML v2002-2-1">
<META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">
<LINK REL="STYLESHEET" HREF="book.css">
<LINK REL="next" HREF="node191.html">
<LINK REL="previous" HREF="node189.html">
<LINK REL="up" HREF="node188.html">
<LINK REL="next" HREF="node191.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html3414"
HREF="node191.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next.png"></A>
<A NAME="tex2html3408"
HREF="node188.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up.png"></A>
<A NAME="tex2html3402"
HREF="node189.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="prev.png"></A>
<A NAME="tex2html3410"
HREF="node4.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents.png"></A>
<A NAME="tex2html3412"
HREF="node201.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html3415"
HREF="node191.html">Square and symmetric triangle</A>
<B> Up:</B> <A NAME="tex2html3409"
HREF="node188.html">Fourier series of the</A>
<B> Previous:</B> <A NAME="tex2html3403"
HREF="node189.html">Sawtooth wave</A>
&nbsp; <B> <A NAME="tex2html3411"
HREF="node4.html">Contents</A></B>
&nbsp; <B> <A NAME="tex2html3413"
HREF="node201.html">Index</A></B>
<BR>
<BR>
<!--End of Navigation Panel-->
<H2><A NAME="SECTION001432000000000000000">
Parabolic wave</A>
</H2>
The same analysis, with some differences in sign and normalization, works
for parabolic waves. First we compute the difference:
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
p[n] - p[n-1] = {
{
{{({n\over N} - {1\over 2})}^2} -
{{({{n-1}\over N} - {1\over 2})}^2}
} \over {
2
}}
\end{displaymath}
-->
<IMG
WIDTH="285" HEIGHT="46" BORDER="0"
SRC="img1326.png"
ALT="\begin{displaymath}
p[n] - p[n-1] = {
{
{{({n\over N} - {1\over 2})}^2} -
{{({{n-1}\over N} - {1\over 2})}^2}
} \over {
2
}}
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
= {
{
{{({n\over N} - {N\over {2N}})}^2} -
{{({{n}\over N} - {{N - 2}\over {2N}})}^2}
} \over {
2
}}
\end{displaymath}
-->
<IMG
WIDTH="199" HEIGHT="46" BORDER="0"
SRC="img1327.png"
ALT="\begin{displaymath}
= {
{
{{({n\over N} - {N\over {2N}})}^2} -
{{({{n}\over N} - {{N - 2}\over {2N}})}^2}
} \over {
2
}}
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
= {
{
{{{2n}\over {N^2}} - {1\over {N}}} + {1\over {N^2}}
} \over {
2
}}
\end{displaymath}
-->
<IMG
WIDTH="115" HEIGHT="43" BORDER="0"
SRC="img1328.png"
ALT="\begin{displaymath}
= {
{
{{{2n}\over {N^2}} - {1\over {N}}} + {1\over {N^2}}
} \over {
2
}}
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
\approx - s[n] / N .
\end{displaymath}
-->
<IMG
WIDTH="77" HEIGHT="28" BORDER="0"
SRC="img1329.png"
ALT="\begin{displaymath}
\approx - s[n] / N .
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
So (again for <IMG
WIDTH="41" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="img1317.png"
ALT="$k \neq 0$">, small compared to <IMG
WIDTH="18" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
SRC="img3.png"
ALT="$N$">) we get:
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
{\cal FT}\{ p[n] \} (k) \approx
{{-1} \over N} \cdot {{-iN} \over {2 \pi k}} \cdot {\cal FT}\{ s[n] \} (k)
\end{displaymath}
-->
<IMG
WIDTH="281" HEIGHT="39" BORDER="0"
SRC="img1330.png"
ALT="\begin{displaymath}
{\cal FT}\{ p[n] \} (k) \approx
{{-1} \over N} \cdot {{-iN} \over {2 \pi k}} \cdot {\cal FT}\{ s[n] \} (k)
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
\approx {{-1} \over N} \cdot {{-iN} \over {2 \pi k}}
\cdot {{-iN} \over {2 \pi k}}
\end{displaymath}
-->
<IMG
WIDTH="134" HEIGHT="39" BORDER="0"
SRC="img1331.png"
ALT="\begin{displaymath}
\approx {{-1} \over N} \cdot {{-iN} \over {2 \pi k}}
\cdot {{-iN} \over {2 \pi k}}
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
= {N \over {4 {\pi ^2} {k^2}}}
\end{displaymath}
-->
<IMG
WIDTH="59" HEIGHT="39" BORDER="0"
SRC="img1332.png"
ALT="\begin{displaymath}
= {N \over {4 {\pi ^2} {k^2}}}
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
and as before we get the Fourier series:
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
p[n] \approx {1 \over {2 {\pi^2}}} \left [
{\cos ( \omega n )}
+ {{\cos ( 2 \omega n)} \over 4}
+ {{\cos ( 3 \omega n)} \over 9}
+ \cdots
\right ]
\end{displaymath}
-->
<IMG
WIDTH="354" HEIGHT="45" BORDER="0"
SRC="img1333.png"
ALT="\begin{displaymath}
p[n] \approx {1 \over {2 {\pi^2}}} \left [
{\cos ( \omega ...
...\over 4}
+ {{\cos ( 3 \omega n)} \over 9}
+ \cdots
\right ]
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
<BR><HR>
<ADDRESS>
Miller Puckette
2006-12-30
</ADDRESS>
</BODY>
</HTML>