2022-04-12 22:02:59 -03:00
|
|
|
<!DOCTYPE html>
|
2022-04-12 21:54:18 -03:00
|
|
|
|
|
|
|
<!--Converted with LaTeX2HTML 2002-2-1 (1.71)
|
|
|
|
original version by: Nikos Drakos, CBLU, University of Leeds
|
|
|
|
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
|
|
|
|
* with significant contributions from:
|
|
|
|
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
|
|
|
|
<HTML>
|
|
|
|
<HEAD>
|
2022-04-12 22:02:59 -03:00
|
|
|
|
|
|
|
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
|
|
|
|
|
|
|
|
2022-04-12 21:54:18 -03:00
|
|
|
<TITLE>Fourier analysis of non-periodic signals</TITLE>
|
|
|
|
<META NAME="description" CONTENT="Fourier analysis of non-periodic signals">
|
|
|
|
<META NAME="keywords" CONTENT="book">
|
|
|
|
<META NAME="resource-type" CONTENT="document">
|
|
|
|
<META NAME="distribution" CONTENT="global">
|
|
|
|
|
|
|
|
<META NAME="Generator" CONTENT="LaTeX2HTML v2002-2-1">
|
|
|
|
<META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">
|
|
|
|
|
|
|
|
<LINK REL="STYLESHEET" HREF="book.css">
|
|
|
|
|
|
|
|
<LINK REL="next" HREF="node172.html">
|
|
|
|
<LINK REL="previous" HREF="node167.html">
|
|
|
|
<LINK REL="up" HREF="node163.html">
|
|
|
|
<LINK REL="next" HREF="node172.html">
|
|
|
|
</HEAD>
|
|
|
|
|
|
|
|
<BODY >
|
|
|
|
<!--Navigation Panel-->
|
|
|
|
<A NAME="tex2html3130"
|
|
|
|
HREF="node172.html">
|
|
|
|
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
|
2022-04-12 22:02:59 -03:00
|
|
|
SRC="next.png"></A>
|
2022-04-12 21:54:18 -03:00
|
|
|
<A NAME="tex2html3124"
|
|
|
|
HREF="node163.html">
|
|
|
|
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
|
2022-04-12 22:02:59 -03:00
|
|
|
SRC="up.png"></A>
|
2022-04-12 21:54:18 -03:00
|
|
|
<A NAME="tex2html3118"
|
|
|
|
HREF="node170.html">
|
|
|
|
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
|
2022-04-12 22:02:59 -03:00
|
|
|
SRC="prev.png"></A>
|
2022-04-12 21:54:18 -03:00
|
|
|
<A NAME="tex2html3126"
|
|
|
|
HREF="node4.html">
|
|
|
|
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
|
2022-04-12 22:02:59 -03:00
|
|
|
SRC="contents.png"></A>
|
2022-04-12 21:54:18 -03:00
|
|
|
<A NAME="tex2html3128"
|
|
|
|
HREF="node201.html">
|
|
|
|
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
|
2022-04-12 22:02:59 -03:00
|
|
|
SRC="index.png"></A>
|
2022-04-12 21:54:18 -03:00
|
|
|
<BR>
|
|
|
|
<B> Next:</B> <A NAME="tex2html3131"
|
|
|
|
HREF="node172.html">Fourier analysis and reconstruction</A>
|
|
|
|
<B> Up:</B> <A NAME="tex2html3125"
|
|
|
|
HREF="node163.html">Fourier analysis and resynthesis</A>
|
|
|
|
<B> Previous:</B> <A NAME="tex2html3119"
|
|
|
|
HREF="node170.html">Fourier transform of a</A>
|
|
|
|
<B> <A NAME="tex2html3127"
|
|
|
|
HREF="node4.html">Contents</A></B>
|
|
|
|
<B> <A NAME="tex2html3129"
|
|
|
|
HREF="node201.html">Index</A></B>
|
|
|
|
<BR>
|
|
|
|
<BR>
|
|
|
|
<!--End of Navigation Panel-->
|
|
|
|
|
|
|
|
<H1><A NAME="SECTION001330000000000000000">
|
|
|
|
Fourier analysis of non-periodic signals</A>
|
|
|
|
</H1>
|
|
|
|
|
|
|
|
<P>
|
|
|
|
Most signals aren't periodic, and even a periodic one might have an unknown
|
|
|
|
period. So we should be prepared to do Fourier analysis on signals without
|
|
|
|
making the comforting assumption that the signal to analyze repeats at a fixed
|
|
|
|
period <IMG
|
|
|
|
WIDTH="18" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
|
|
|
|
SRC="img3.png"
|
|
|
|
ALT="$N$">. Of course, we can simply take <IMG
|
|
|
|
WIDTH="18" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
|
|
|
|
SRC="img3.png"
|
|
|
|
ALT="$N$"> samples of the signal and
|
|
|
|
<I>make</I> it periodic; this is essentially what we did in the previous
|
|
|
|
section, in which a pure sinusoid gave us the complicated Fourier transform of
|
|
|
|
Figure <A HREF="node170.html#fig09.03">9.3</A> (part b).
|
|
|
|
|
|
|
|
<P>
|
|
|
|
However, it would be better to get a result in which the response to a pure
|
|
|
|
sinusoid were better localized around the corresponding value of <IMG
|
|
|
|
WIDTH="12" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
|
|
|
|
SRC="img58.png"
|
|
|
|
ALT="$k$">. We
|
|
|
|
can accomplish this using the enveloping technique first introduced in Figure
|
|
|
|
<A HREF="node29.html#fig02.07">2.7</A> (Page <A HREF="node29.html#fig02.07"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]"
|
2022-04-12 22:02:59 -03:00
|
|
|
SRC="crossref.png"></A>). Applying this technique to Fourier
|
2022-04-12 21:54:18 -03:00
|
|
|
analysis will not only improve our analyses, but will also shed new light on
|
|
|
|
the enveloping looping sampler of Chapter 2.
|
|
|
|
|
|
|
|
<P>
|
|
|
|
Given a signal <IMG
|
|
|
|
WIDTH="36" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
|
|
|
SRC="img669.png"
|
|
|
|
ALT="$X[n]$">, periodic or not, defined on the points from
|
|
|
|
<IMG
|
|
|
|
WIDTH="11" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
|
|
|
SRC="img179.png"
|
|
|
|
ALT="$0$"> to <IMG
|
|
|
|
WIDTH="45" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
|
|
|
|
SRC="img171.png"
|
|
|
|
ALT="$N-1$">,
|
|
|
|
the technique is to envelope the signal before doing the Fourier analysis.
|
|
|
|
The envelope shape is known as a
|
|
|
|
<A NAME="12499"></A><I>window function</I>.
|
|
|
|
Given a window function <IMG
|
|
|
|
WIDTH="33" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
|
|
|
SRC="img1123.png"
|
|
|
|
ALT="$w[n]$">, the
|
|
|
|
<A NAME="12501"></A><I>windowed Fourier transform</I>
|
|
|
|
is:
|
|
|
|
<BR><P></P>
|
|
|
|
<DIV ALIGN="CENTER">
|
|
|
|
<!-- MATH
|
|
|
|
\begin{displaymath}
|
|
|
|
{\cal FT} \left \{ w[n] X[n] \right \} (k)
|
|
|
|
\end{displaymath}
|
|
|
|
-->
|
|
|
|
|
|
|
|
<IMG
|
|
|
|
WIDTH="130" HEIGHT="28" BORDER="0"
|
|
|
|
SRC="img1124.png"
|
|
|
|
ALT="\begin{displaymath}
|
|
|
|
{\cal FT} \left \{ w[n] X[n] \right \} (k)
|
|
|
|
\end{displaymath}">
|
|
|
|
</DIV>
|
|
|
|
<BR CLEAR="ALL">
|
|
|
|
<P></P>
|
|
|
|
Much ink has been spilled over the design of suitable window functions for
|
|
|
|
particular situations, but here we will consider the simplest one, named the
|
|
|
|
<A NAME="12504"></A><A NAME="12505"></A><I>Hann</I>
|
2022-04-12 23:17:03 -03:00
|
|
|
window function (the name is sometimes corrupted to "Hanning" in DSP circles).
|
2022-04-12 21:54:18 -03:00
|
|
|
The Hann window is:
|
|
|
|
<BR><P></P>
|
|
|
|
<DIV ALIGN="CENTER">
|
|
|
|
<!-- MATH
|
|
|
|
\begin{displaymath}
|
|
|
|
w[n] = {1\over 2} - {1\over 2} \cos(2\pi n / N)
|
|
|
|
\end{displaymath}
|
|
|
|
-->
|
|
|
|
|
|
|
|
<IMG
|
|
|
|
WIDTH="178" HEIGHT="38" BORDER="0"
|
|
|
|
SRC="img1125.png"
|
|
|
|
ALT="\begin{displaymath}
|
|
|
|
w[n] = {1\over 2} - {1\over 2} \cos(2\pi n / N)
|
|
|
|
\end{displaymath}">
|
|
|
|
</DIV>
|
|
|
|
<BR CLEAR="ALL">
|
|
|
|
<P></P>
|
|
|
|
It is easy to analyze the effect of multiplying a signal by the Hann window
|
|
|
|
before taking the Fourier transform, because the Hann window can be written
|
|
|
|
as a sum of three complex exponentials:
|
|
|
|
<BR><P></P>
|
|
|
|
<DIV ALIGN="CENTER">
|
|
|
|
<!-- MATH
|
|
|
|
\begin{displaymath}
|
|
|
|
w[n] = {1\over 2} - {1\over 4} {U^n} - {1\over 4} {U^{-n}}
|
|
|
|
\end{displaymath}
|
|
|
|
-->
|
|
|
|
|
|
|
|
<IMG
|
|
|
|
WIDTH="177" HEIGHT="38" BORDER="0"
|
|
|
|
SRC="img1126.png"
|
|
|
|
ALT="\begin{displaymath}
|
|
|
|
w[n] = {1\over 2} - {1\over 4} {U^n} - {1\over 4} {U^{-n}}
|
|
|
|
\end{displaymath}">
|
|
|
|
</DIV>
|
|
|
|
<BR CLEAR="ALL">
|
|
|
|
<P></P>
|
|
|
|
where as before, <IMG
|
|
|
|
WIDTH="16" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
|
|
|
|
SRC="img1048.png"
|
|
|
|
ALT="$U$"> is the unit-magnitude complex number with argument
|
|
|
|
<IMG
|
|
|
|
WIDTH="42" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
|
|
|
SRC="img184.png"
|
|
|
|
ALT="$2\pi/N$">.
|
|
|
|
We can now calculate the windowed Fourier transform of a
|
|
|
|
sinusoid <IMG
|
|
|
|
WIDTH="24" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
|
|
|
|
SRC="img653.png"
|
|
|
|
ALT="$Z^n$"> with angular frequency <IMG
|
|
|
|
WIDTH="13" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
|
|
|
SRC="img7.png"
|
|
|
|
ALT="$\alpha $"> as before. The phases
|
|
|
|
come out messy and we'll replace them with simplified approximations:
|
|
|
|
<BR><P></P>
|
|
|
|
<DIV ALIGN="CENTER">
|
|
|
|
<!-- MATH
|
|
|
|
\begin{displaymath}
|
|
|
|
{\cal FT} \left \{ w[n] {Z^n} \right \} (k)
|
|
|
|
\end{displaymath}
|
|
|
|
-->
|
|
|
|
|
|
|
|
<IMG
|
|
|
|
WIDTH="118" HEIGHT="28" BORDER="0"
|
|
|
|
SRC="img1127.png"
|
|
|
|
ALT="\begin{displaymath}
|
|
|
|
{\cal FT} \left \{ w[n] {Z^n} \right \} (k)
|
|
|
|
\end{displaymath}">
|
|
|
|
</DIV>
|
|
|
|
<BR CLEAR="ALL">
|
|
|
|
<P></P>
|
|
|
|
<BR><P></P>
|
|
|
|
<DIV ALIGN="CENTER">
|
|
|
|
<!-- MATH
|
|
|
|
\begin{displaymath}
|
|
|
|
= {\cal FT} \left \{ {1\over 2} {Z^n} - {1\over 4} {(UZ)^n}
|
|
|
|
- {1\over 4} {({U^{-1}}Z)^n}\right \} (k)
|
|
|
|
\end{displaymath}
|
|
|
|
-->
|
|
|
|
|
|
|
|
<IMG
|
|
|
|
WIDTH="294" HEIGHT="45" BORDER="0"
|
|
|
|
SRC="img1128.png"
|
|
|
|
ALT="\begin{displaymath}
|
|
|
|
= {\cal FT} \left \{ {1\over 2} {Z^n} - {1\over 4} {(UZ)^n}
|
|
|
|
- {1\over 4} {({U^{-1}}Z)^n}\right \} (k)
|
|
|
|
\end{displaymath}">
|
|
|
|
</DIV>
|
|
|
|
<BR CLEAR="ALL">
|
|
|
|
<P></P>
|
|
|
|
<BR><P></P>
|
|
|
|
<DIV ALIGN="CENTER">
|
|
|
|
<!-- MATH
|
|
|
|
\begin{displaymath}
|
|
|
|
\approx \left [ \cos(\Phi(k)) + i \sin(\Phi(k))\right ]
|
|
|
|
M(k - {{\alpha } \over {\omega}})
|
|
|
|
\end{displaymath}
|
|
|
|
-->
|
|
|
|
|
|
|
|
<IMG
|
|
|
|
WIDTH="257" HEIGHT="35" BORDER="0"
|
|
|
|
SRC="img1129.png"
|
|
|
|
ALT="\begin{displaymath}
|
|
|
|
\approx \left [ \cos(\Phi(k)) + i \sin(\Phi(k))\right ]
|
|
|
|
M(k - {{\alpha } \over {\omega}})
|
|
|
|
\end{displaymath}">
|
|
|
|
</DIV>
|
|
|
|
<BR CLEAR="ALL">
|
|
|
|
<P></P>
|
|
|
|
where the (approximate) phase term is:
|
|
|
|
<BR><P></P>
|
|
|
|
<DIV ALIGN="CENTER">
|
|
|
|
<!-- MATH
|
|
|
|
\begin{displaymath}
|
|
|
|
\Phi(k) = - \pi \cdot (k - {{\alpha } \over {\omega}})
|
|
|
|
\end{displaymath}
|
|
|
|
-->
|
|
|
|
|
|
|
|
<IMG
|
|
|
|
WIDTH="140" HEIGHT="35" BORDER="0"
|
|
|
|
SRC="img1130.png"
|
|
|
|
ALT="\begin{displaymath}
|
|
|
|
\Phi(k) = - \pi \cdot (k - {{\alpha } \over {\omega}})
|
|
|
|
\end{displaymath}">
|
|
|
|
</DIV>
|
|
|
|
<BR CLEAR="ALL">
|
|
|
|
<P></P>
|
|
|
|
and the magnitude function is:
|
|
|
|
<BR><P></P>
|
|
|
|
<DIV ALIGN="CENTER">
|
|
|
|
<!-- MATH
|
|
|
|
\begin{displaymath}
|
|
|
|
M(k) =
|
|
|
|
{\left [ {
|
|
|
|
{1\over 2}{D_N}(k)
|
|
|
|
+ {1\over 4}{D_N}(k + 1)
|
|
|
|
+ {1\over 4}{D_N}(k - 1)
|
|
|
|
} \right ] }
|
|
|
|
\end{displaymath}
|
|
|
|
-->
|
|
|
|
|
|
|
|
<IMG
|
|
|
|
WIDTH="340" HEIGHT="45" BORDER="0"
|
|
|
|
SRC="img1131.png"
|
|
|
|
ALT="\begin{displaymath}
|
|
|
|
M(k) =
|
|
|
|
{\left [ {
|
|
|
|
{1\over 2}{D_N}(k)
|
|
|
|
+ {1\over 4}{D_N}(k + 1)
|
|
|
|
+ {1\over 4}{D_N}(k - 1)
|
|
|
|
} \right ] }
|
|
|
|
\end{displaymath}">
|
|
|
|
</DIV>
|
|
|
|
<BR CLEAR="ALL">
|
|
|
|
<P></P>
|
|
|
|
The magnitude function <IMG
|
|
|
|
WIDTH="41" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
|
|
|
SRC="img1132.png"
|
|
|
|
ALT="$M(k)$"> is graphed in Figure <A HREF="#fig09.05">9.5</A>. The three
|
|
|
|
Dirichlet kernel components are also shown separately.
|
|
|
|
|
|
|
|
<P>
|
|
|
|
|
|
|
|
<DIV ALIGN="CENTER"><A NAME="fig09.05"></A><A NAME="12536"></A>
|
|
|
|
<TABLE>
|
|
|
|
<CAPTION ALIGN="BOTTOM"><STRONG>Figure 9.5:</STRONG>
|
|
|
|
The magnitude M(k) of the Fourier transform of the Hann
|
|
|
|
window function. It is the sum of three (shifted and magnified) copies of the Dirichlet
|
|
|
|
kernel <IMG
|
|
|
|
WIDTH="28" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
|
|
|
|
SRC="img62.png"
|
|
|
|
ALT="$D_N$">, with <IMG
|
|
|
|
WIDTH="63" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
|
|
|
|
SRC="img63.png"
|
|
|
|
ALT="$N=100$">. </CAPTION>
|
|
|
|
<TR><TD><IMG
|
|
|
|
WIDTH="409" HEIGHT="207" BORDER="0"
|
|
|
|
SRC="img1133.png"
|
|
|
|
ALT="\begin{figure}\psfig{file=figs/fig09.05.ps}\end{figure}"></TD></TR>
|
|
|
|
</TABLE>
|
|
|
|
</DIV>
|
|
|
|
|
|
|
|
<P>
|
|
|
|
The main lobe of <IMG
|
|
|
|
WIDTH="41" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
|
|
|
SRC="img1132.png"
|
|
|
|
ALT="$M(k)$"> is four harmonics wide, twice the width of the
|
|
|
|
main lobe of the Dirichlet kernel. The sidelobes, on the other hand, have
|
|
|
|
much smaller magnitude. Each sidelobe of <IMG
|
|
|
|
WIDTH="41" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
|
|
|
SRC="img1132.png"
|
|
|
|
ALT="$M(k)$"> is a sum of three sidelobes
|
|
|
|
of <IMG
|
|
|
|
WIDTH="46" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
|
|
|
SRC="img1134.png"
|
|
|
|
ALT="${D_n}(k)$">, one attenuated by <IMG
|
|
|
|
WIDTH="27" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
|
|
|
SRC="img98.png"
|
|
|
|
ALT="$1/2$"> and the others, opposite in sign,
|
|
|
|
attenuated by <IMG
|
|
|
|
WIDTH="27" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
|
|
|
SRC="img1135.png"
|
|
|
|
ALT="$1/4$">. They do not cancel out perfectly but they do cancel out
|
|
|
|
fairly well.
|
|
|
|
|
|
|
|
<P>
|
|
|
|
The sidelobes reach their maximum amplitudes near their midpoints, and we
|
|
|
|
can estimate their amplitudes there, using the approximation:
|
|
|
|
<BR><P></P>
|
|
|
|
<DIV ALIGN="CENTER">
|
|
|
|
<!-- MATH
|
|
|
|
\begin{displaymath}
|
|
|
|
{D_N}(k) \approx {
|
|
|
|
{N \sin(\pi k) } \over {\pi k}
|
|
|
|
}
|
|
|
|
\end{displaymath}
|
|
|
|
-->
|
|
|
|
|
|
|
|
<IMG
|
|
|
|
WIDTH="138" HEIGHT="40" BORDER="0"
|
|
|
|
SRC="img1136.png"
|
|
|
|
ALT="\begin{displaymath}
|
|
|
|
{D_N}(k) \approx {
|
|
|
|
{N \sin(\pi k) } \over {\pi k}
|
|
|
|
}
|
|
|
|
\end{displaymath}">
|
|
|
|
</DIV>
|
|
|
|
<BR CLEAR="ALL">
|
|
|
|
<P></P>
|
|
|
|
Setting <!-- MATH
|
|
|
|
$k = 3/2, 5/2, \ldots$
|
|
|
|
-->
|
|
|
|
<IMG
|
|
|
|
WIDTH="113" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
|
|
|
SRC="img1137.png"
|
|
|
|
ALT="$k = 3/2, 5/2, \ldots$"> gives sidelobe amplitudes, relative to the
|
|
|
|
peak height <IMG
|
|
|
|
WIDTH="18" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
|
|
|
|
SRC="img3.png"
|
|
|
|
ALT="$N$">, of:
|
|
|
|
<BR><P></P>
|
|
|
|
<DIV ALIGN="CENTER">
|
|
|
|
<!-- MATH
|
|
|
|
\begin{displaymath}
|
|
|
|
{2 \over {3 \pi}} \approx -13 \mathrm{dB} , \;
|
|
|
|
{2 \over {5 \pi}} \approx -18 \mathrm{dB} , \;
|
|
|
|
{2 \over {7 \pi}} \approx -21 \mathrm{dB} , \;
|
|
|
|
{2 \over {9 \pi}} \approx -23 \mathrm{dB} ,
|
|
|
|
\ldots
|
|
|
|
\end{displaymath}
|
|
|
|
-->
|
|
|
|
|
|
|
|
<IMG
|
|
|
|
WIDTH="420" HEIGHT="38" BORDER="0"
|
|
|
|
SRC="img1138.png"
|
|
|
|
ALT="\begin{displaymath}
|
|
|
|
{2 \over {3 \pi}} \approx -13 \mathrm{dB} , \;
|
|
|
|
{2 \over {5...
|
|
|
|
...{dB} , \;
|
|
|
|
{2 \over {9 \pi}} \approx -23 \mathrm{dB} ,
|
|
|
|
\ldots
|
|
|
|
\end{displaymath}">
|
|
|
|
</DIV>
|
|
|
|
<BR CLEAR="ALL">
|
|
|
|
<P></P>
|
|
|
|
The sidelobes drop off progressively more slowly so that the tenth one is only
|
|
|
|
attenuated about 30 dB and the 32nd one about -40 dB. On the
|
|
|
|
other hand, the Hann window sidelobes
|
|
|
|
are attenuated by:
|
|
|
|
<BR><P></P>
|
|
|
|
<DIV ALIGN="CENTER">
|
|
|
|
<!-- MATH
|
|
|
|
\begin{displaymath}
|
|
|
|
{2 \over {5 \pi}} - {1\over 2} [ {2 \over {3 \pi}} + {2 \over {7 \pi}} ]
|
|
|
|
\approx -32.30 \mathrm{dB}
|
|
|
|
\end{displaymath}
|
|
|
|
-->
|
|
|
|
|
|
|
|
<IMG
|
|
|
|
WIDTH="210" HEIGHT="38" BORDER="0"
|
|
|
|
SRC="img1139.png"
|
|
|
|
ALT="\begin{displaymath}
|
|
|
|
{2 \over {5 \pi}} - {1\over 2} [ {2 \over {3 \pi}} + {2 \over {7 \pi}} ]
|
|
|
|
\approx -32.30 \mathrm{dB}
|
|
|
|
\end{displaymath}">
|
|
|
|
</DIV>
|
|
|
|
<BR CLEAR="ALL">
|
|
|
|
<P></P>
|
|
|
|
and <IMG
|
|
|
|
WIDTH="31" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
|
|
|
SRC="img1140.png"
|
|
|
|
ALT="$-42$">, <IMG
|
|
|
|
WIDTH="31" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
|
|
|
SRC="img1141.png"
|
|
|
|
ALT="$-49$">, <IMG
|
|
|
|
WIDTH="31" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
|
|
|
SRC="img1142.png"
|
|
|
|
ALT="$-54$">, and <IMG
|
|
|
|
WIDTH="31" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
|
|
|
SRC="img1143.png"
|
|
|
|
ALT="$-59$"> dB for the next four sidelobes.
|
|
|
|
|
|
|
|
<P>
|
|
|
|
This shows that applying a Hann window before taking the Fourier transform
|
|
|
|
will better allow us to isolate sinusoidal
|
|
|
|
components. If a signal has many sinusoidal components, the sidelobes
|
|
|
|
engendered by each one will interfere with the main lobe of all the others.
|
|
|
|
Reducing the amplitude of the sidelobes reduces this interference.
|
|
|
|
|
|
|
|
<P>
|
|
|
|
|
|
|
|
<DIV ALIGN="CENTER"><A NAME="fig09.06"></A><A NAME="12558"></A>
|
|
|
|
<TABLE>
|
|
|
|
<CAPTION ALIGN="BOTTOM"><STRONG>Figure 9.6:</STRONG>
|
|
|
|
The Hann-windowed Fourier transform of a signal with two
|
|
|
|
sinusoidal components, at frequencies 5.3 and 10.6 times the fundamental,
|
|
|
|
and with different complex amplitudes.</CAPTION>
|
|
|
|
<TR><TD><IMG
|
|
|
|
WIDTH="482" HEIGHT="245" BORDER="0"
|
|
|
|
SRC="img1144.png"
|
|
|
|
ALT="\begin{figure}\psfig{file=figs/fig09.06.ps}\end{figure}"></TD></TR>
|
|
|
|
</TABLE>
|
|
|
|
</DIV>
|
|
|
|
|
|
|
|
<P>
|
|
|
|
Figure <A HREF="#fig09.06">9.6</A> shows a Hann-windowed Fourier analysis of a signal with
|
|
|
|
two sinusoidal components. The two are separated by about 5 times the
|
|
|
|
fundamental frequency <IMG
|
|
|
|
WIDTH="14" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
|
|
|
SRC="img27.png"
|
|
|
|
ALT="$\omega $">, and for each we see clearly the shape of the
|
|
|
|
Hann window's Fourier transform. Four points of the Fourier analysis lie
|
|
|
|
within the main lobe of <IMG
|
|
|
|
WIDTH="41" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
|
|
|
SRC="img1132.png"
|
|
|
|
ALT="$M(k)$"> corresponding to each sinusoid. The amplitude
|
|
|
|
and phase of the individual sinusoids are reflected in those of the
|
|
|
|
(four-point-wide) peaks. The four points within a peak which happen to fall at
|
|
|
|
integer values <IMG
|
|
|
|
WIDTH="12" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
|
|
|
|
SRC="img58.png"
|
|
|
|
ALT="$k$"> are successively about one half cycle out of phase.
|
|
|
|
|
|
|
|
<P>
|
|
|
|
To fully resolve the partials of a signal, we should choose an analysis size
|
|
|
|
<IMG
|
|
|
|
WIDTH="18" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
|
|
|
|
SRC="img3.png"
|
|
|
|
ALT="$N$"> large enough so that <IMG
|
|
|
|
WIDTH="74" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
|
|
|
SRC="img1047.png"
|
|
|
|
ALT="$\omega=2\pi/N$"> is no more than a quarter of the
|
|
|
|
frequency separation between neighboring partials. For a periodic signal, for
|
|
|
|
example, the partials are separated by the fundamental frequency. For the
|
|
|
|
analysis to fully resolve the partials, the analysis period <IMG
|
|
|
|
WIDTH="18" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
|
|
|
|
SRC="img3.png"
|
|
|
|
ALT="$N$"> must be
|
|
|
|
at least four periods of the signal.
|
|
|
|
|
|
|
|
<P>
|
|
|
|
In some applications it works to allow the peaks to overlap as long as the
|
|
|
|
center of each peak is isolated from all the other peaks; in this case the
|
|
|
|
four-period rule may be relaxed to three or even slightly less.
|
|
|
|
|
|
|
|
<P>
|
|
|
|
<HR>
|
|
|
|
<!--Navigation Panel-->
|
|
|
|
<A NAME="tex2html3130"
|
|
|
|
HREF="node172.html">
|
|
|
|
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
|
2022-04-12 22:02:59 -03:00
|
|
|
SRC="next.png"></A>
|
2022-04-12 21:54:18 -03:00
|
|
|
<A NAME="tex2html3124"
|
|
|
|
HREF="node163.html">
|
|
|
|
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
|
2022-04-12 22:02:59 -03:00
|
|
|
SRC="up.png"></A>
|
2022-04-12 21:54:18 -03:00
|
|
|
<A NAME="tex2html3118"
|
|
|
|
HREF="node170.html">
|
|
|
|
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
|
2022-04-12 22:02:59 -03:00
|
|
|
SRC="prev.png"></A>
|
2022-04-12 21:54:18 -03:00
|
|
|
<A NAME="tex2html3126"
|
|
|
|
HREF="node4.html">
|
|
|
|
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
|
2022-04-12 22:02:59 -03:00
|
|
|
SRC="contents.png"></A>
|
2022-04-12 21:54:18 -03:00
|
|
|
<A NAME="tex2html3128"
|
|
|
|
HREF="node201.html">
|
|
|
|
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
|
2022-04-12 22:02:59 -03:00
|
|
|
SRC="index.png"></A>
|
2022-04-12 21:54:18 -03:00
|
|
|
<BR>
|
|
|
|
<B> Next:</B> <A NAME="tex2html3131"
|
|
|
|
HREF="node172.html">Fourier analysis and reconstruction</A>
|
|
|
|
<B> Up:</B> <A NAME="tex2html3125"
|
|
|
|
HREF="node163.html">Fourier analysis and resynthesis</A>
|
|
|
|
<B> Previous:</B> <A NAME="tex2html3119"
|
|
|
|
HREF="node170.html">Fourier transform of a</A>
|
|
|
|
<B> <A NAME="tex2html3127"
|
|
|
|
HREF="node4.html">Contents</A></B>
|
|
|
|
<B> <A NAME="tex2html3129"
|
|
|
|
HREF="node201.html">Index</A></B>
|
|
|
|
<!--End of Navigation Panel-->
|
|
|
|
<ADDRESS>
|
|
|
|
Miller Puckette
|
|
|
|
2006-12-30
|
|
|
|
</ADDRESS>
|
|
|
|
</BODY>
|
|
|
|
</HTML>
|