miller-book/node149.html

271 lines
8.6 KiB
HTML

<!DOCTYPE html>
<!--Converted with LaTeX2HTML 2002-2-1 (1.71)
original version by: Nikos Drakos, CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<TITLE>Impulse responses of recirculating filters</TITLE>
<META NAME="description" CONTENT="Impulse responses of recirculating filters">
<META NAME="keywords" CONTENT="book">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META NAME="Generator" CONTENT="LaTeX2HTML v2002-2-1">
<META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">
<LINK REL="STYLESHEET" HREF="book.css">
<LINK REL="next" HREF="node150.html">
<LINK REL="previous" HREF="node148.html">
<LINK REL="up" HREF="node139.html">
<LINK REL="next" HREF="node150.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html2800"
HREF="node150.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next.png"></A>
<A NAME="tex2html2794"
HREF="node139.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up.png"></A>
<A NAME="tex2html2788"
HREF="node148.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="prev.png"></A>
<A NAME="tex2html2796"
HREF="node4.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents.png"></A>
<A NAME="tex2html2798"
HREF="node201.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html2801"
HREF="node150.html">All-pass filters</A>
<B> Up:</B> <A NAME="tex2html2795"
HREF="node139.html">Designing filters</A>
<B> Previous:</B> <A NAME="tex2html2789"
HREF="node148.html">Time-varying coefficients</A>
&nbsp; <B> <A NAME="tex2html2797"
HREF="node4.html">Contents</A></B>
&nbsp; <B> <A NAME="tex2html2799"
HREF="node201.html">Index</A></B>
<BR>
<BR>
<!--End of Navigation Panel-->
<H2><A NAME="SECTION0012310000000000000000">
Impulse responses of recirculating filters</A>
</H2>
<P>
In Section <A HREF="node109.html#sect7.recirculatingcomb">7.4</A> we analyzed the impulse response of a
recirculating comb filter, of which the one-pole low-pass filter is a special
case. Figure <A HREF="#fig08.22">8.22</A> shows the result for two low-pass filters and
one complex one-pole resonant filter. All are elementary recirculating filters
as introduced in Section <A HREF="node135.html#sect8.recirculating">8.2.3</A>. Each is normalized to have
unit maximum gain.
<P>
In the case of a low-pass filter, the impulse response gets longer (and
lower) as the pole gets closer to one. Suppose the pole is at a point <IMG
WIDTH="56" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img975.png"
ALT="$1-1/n$">
(so that the cutoff frequency is <IMG
WIDTH="28" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img309.png"
ALT="$1/n$"> radians). The normalizing factor is
also <IMG
WIDTH="28" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img309.png"
ALT="$1/n$">. After <IMG
WIDTH="13" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
SRC="img75.png"
ALT="$n$"> points, the output diminishes by a factor of
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
{ {\left ( 1-{1\over n} \right ) } ^ n } \approx {1\over e}
\end{displaymath}
-->
<IMG
WIDTH="101" HEIGHT="46" BORDER="0"
SRC="img976.png"
ALT="\begin{displaymath}
{ {\left ( 1-{1\over n} \right ) } ^ n } \approx {1\over e}
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
where <IMG
WIDTH="10" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
SRC="img977.png"
ALT="$e$"> is Euler's constant, about
2.718. The filter can be said to have a
<A NAME="10483"></A><I>settling time</I> of <IMG
WIDTH="13" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
SRC="img75.png"
ALT="$n$"> samples. In the figure, <IMG
WIDTH="42" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
SRC="img978.png"
ALT="$n=5$"> for part (a) and
<IMG
WIDTH="50" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
SRC="img164.png"
ALT="$n=10$"> for part (b). In general, the settling time (in samples) is approximately one
over the cutoff frequency (in angular units).
<P>
<DIV ALIGN="CENTER"><A NAME="fig08.22"></A><A NAME="10487"></A>
<TABLE>
<CAPTION ALIGN="BOTTOM"><STRONG>Figure 8.22:</STRONG>
The impulse response of three elementary recirculating (one-pole)
filters,
normalized for peak gain 1: (a) low-pass with <IMG
WIDTH="57" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
SRC="img53.png"
ALT="$P=0.8$">; (b) low-pass with
<IMG
WIDTH="57" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
SRC="img54.png"
ALT="$P=0.9$">; (c) band-pass (only the real part shown), with <IMG
WIDTH="66" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img55.png"
ALT="$\vert P\vert=0.9$"> and a center frequency of <IMG
WIDTH="44" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img56.png"
ALT="$2\pi /10$">.</CAPTION>
<TR><TD><IMG
WIDTH="441" HEIGHT="491" BORDER="0"
SRC="img979.png"
ALT="\begin{figure}\psfig{file=figs/fig08.22.ps}\end{figure}"></TD></TR>
</TABLE>
</DIV>
<P>
The situation gets more interesting when we look at a resonant one-pole filter,
that is, one whose pole lies off the real axis. In part (c) of the figure,
the pole <IMG
WIDTH="15" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
SRC="img880.png"
ALT="$P$"> has absolute value 0.9 (as in part b), but its argument is
set to <IMG
WIDTH="44" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img56.png"
ALT="$2\pi /10$"> radians. We get the same settling time as in part (b), but
the output rings at the resonant frequency (and so at a period of 10 samples
in this example).
<P>
A natural question to ask is, how many periods of ringing do we get before the
filter decays to strength <IMG
WIDTH="26" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img980.png"
ALT="$1/e$">? If the pole of a resonant filter has magnitude
<IMG
WIDTH="56" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img975.png"
ALT="$1-1/n$"> as above, we have seen in Section <A HREF="node135.html#sect8.recirculating">8.2.3</A> that the
bandwidth (call it <IMG
WIDTH="10" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
SRC="img21.png"
ALT="$b$">) is about <IMG
WIDTH="28" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img309.png"
ALT="$1/n$">, and we see here that the settling time
is about <IMG
WIDTH="13" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
SRC="img75.png"
ALT="$n$">. The resonant frequency (call it <IMG
WIDTH="14" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
SRC="img27.png"
ALT="$\omega $">) is the argument of the
pole, and the period in samples of the ringing is
<IMG
WIDTH="39" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img138.png"
ALT="$2 \pi / \omega$">. The number of periods that make up the settling time is thus:
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
{{n} \over {2\pi/\omega}} = {{1} \over {2\pi}} {{\omega} \over {b}}
= {{q} \over {2\pi}}
\end{displaymath}
-->
<IMG
WIDTH="136" HEIGHT="42" BORDER="0"
SRC="img981.png"
ALT="\begin{displaymath}
{{n} \over {2\pi/\omega}} = {{1} \over {2\pi}} {{\omega} \over {b}}
= {{q} \over {2\pi}}
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
where <IMG
WIDTH="11" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
SRC="img592.png"
ALT="$q$"> is the
<A NAME="10499"></A><I>quality</I> of the filter, defined as the center frequency divided by
bandwidth. Resonant filters are often specified in terms of the center
frequency and ``q" in place of bandwidth.
<P>
<HR>
<!--Navigation Panel-->
<A NAME="tex2html2800"
HREF="node150.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next.png"></A>
<A NAME="tex2html2794"
HREF="node139.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up.png"></A>
<A NAME="tex2html2788"
HREF="node148.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="prev.png"></A>
<A NAME="tex2html2796"
HREF="node4.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents.png"></A>
<A NAME="tex2html2798"
HREF="node201.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html2801"
HREF="node150.html">All-pass filters</A>
<B> Up:</B> <A NAME="tex2html2795"
HREF="node139.html">Designing filters</A>
<B> Previous:</B> <A NAME="tex2html2789"
HREF="node148.html">Time-varying coefficients</A>
&nbsp; <B> <A NAME="tex2html2797"
HREF="node4.html">Contents</A></B>
&nbsp; <B> <A NAME="tex2html2799"
HREF="node201.html">Index</A></B>
<!--End of Navigation Panel-->
<ADDRESS>
Miller Puckette
2006-12-30
</ADDRESS>
</BODY>
</HTML>