339 lines
		
	
	
		
			9.0 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
			
		
		
	
	
			339 lines
		
	
	
		
			9.0 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
| <!DOCTYPE html>
 | |
| 
 | |
| <!--Converted with LaTeX2HTML 2002-2-1 (1.71)
 | |
| original version by:  Nikos Drakos, CBLU, University of Leeds
 | |
| * revised and updated by:  Marcus Hennecke, Ross Moore, Herb Swan
 | |
| * with significant contributions from:
 | |
|   Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
 | |
| <HTML>
 | |
| <HEAD>
 | |
| 
 | |
| <meta name="viewport" content="width=device-width, initial-scale=1.0">
 | |
| 
 | |
| 
 | |
| <TITLE>Fourier transform as additive synthesis</TITLE>
 | |
| <META NAME="description" CONTENT="Fourier transform as additive synthesis">
 | |
| <META NAME="keywords" CONTENT="book">
 | |
| <META NAME="resource-type" CONTENT="document">
 | |
| <META NAME="distribution" CONTENT="global">
 | |
| 
 | |
| <META NAME="Generator" CONTENT="LaTeX2HTML v2002-2-1">
 | |
| <META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">
 | |
| 
 | |
| <LINK REL="STYLESHEET" HREF="book.css">
 | |
| 
 | |
| <LINK REL="previous" HREF="node165.html">
 | |
| <LINK REL="up" HREF="node164.html">
 | |
| <LINK REL="next" HREF="node167.html">
 | |
| </HEAD>
 | |
| 
 | |
| <BODY >
 | |
| <!--Navigation Panel-->
 | |
| <A NAME="tex2html3059"
 | |
|   HREF="node167.html">
 | |
| <IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
 | |
|  SRC="next.png"></A> 
 | |
| <A NAME="tex2html3053"
 | |
|   HREF="node164.html">
 | |
| <IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
 | |
|  SRC="up.png"></A> 
 | |
| <A NAME="tex2html3049"
 | |
|   HREF="node165.html">
 | |
| <IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
 | |
|  SRC="prev.png"></A> 
 | |
| <A NAME="tex2html3055"
 | |
|   HREF="node4.html">
 | |
| <IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
 | |
|  SRC="contents.png"></A> 
 | |
| <A NAME="tex2html3057"
 | |
|   HREF="node201.html">
 | |
| <IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
 | |
|  SRC="index.png"></A> 
 | |
| <BR>
 | |
| <B> Next:</B> <A NAME="tex2html3060"
 | |
|   HREF="node167.html">Properties of Fourier transforms</A>
 | |
| <B> Up:</B> <A NAME="tex2html3054"
 | |
|   HREF="node164.html">Fourier analysis of periodic</A>
 | |
| <B> Previous:</B> <A NAME="tex2html3050"
 | |
|   HREF="node165.html">Periodicity of the Fourier</A>
 | |
|    <B>  <A NAME="tex2html3056"
 | |
|   HREF="node4.html">Contents</A></B> 
 | |
|    <B>  <A NAME="tex2html3058"
 | |
|   HREF="node201.html">Index</A></B> 
 | |
| <BR>
 | |
| <BR>
 | |
| <!--End of Navigation Panel-->
 | |
| 
 | |
| <H2><A NAME="SECTION001312000000000000000"></A>
 | |
| <A NAME="sect9-IFT"></A>
 | |
| <BR>
 | |
| Fourier transform as additive synthesis
 | |
| </H2>
 | |
| 
 | |
| <P>
 | |
| Now consider an arbitrary signal <IMG
 | |
|  WIDTH="36" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 | |
|  SRC="img669.png"
 | |
|  ALT="$X[n]$"> that repeats every <IMG
 | |
|  WIDTH="18" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
 | |
|  SRC="img3.png"
 | |
|  ALT="$N$">
 | |
| samples.  (Previously we
 | |
| had assumed that <IMG
 | |
|  WIDTH="36" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 | |
|  SRC="img669.png"
 | |
|  ALT="$X[n]$"> could be obtained as a sum of sinusoids, and we haven't
 | |
| yet found out whether every periodic <IMG
 | |
|  WIDTH="36" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 | |
|  SRC="img669.png"
 | |
|  ALT="$X[n]$"> can be obtained that way.)  Let
 | |
| <IMG
 | |
|  WIDTH="33" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 | |
|  SRC="img1062.png"
 | |
|  ALT="$Y[k]$"> denote the Fourier transform of <IMG
 | |
|  WIDTH="17" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
 | |
|  SRC="img670.png"
 | |
|  ALT="$X$"> for <!-- MATH
 | |
|  $k = 0, ..., N-1$
 | |
|  -->
 | |
| <IMG
 | |
|  WIDTH="110" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 | |
|  SRC="img1063.png"
 | |
|  ALT="$k = 0, ..., N-1$">:
 | |
| <BR><P></P>
 | |
| <DIV ALIGN="CENTER">
 | |
| <!-- MATH
 | |
|  \begin{displaymath}
 | |
| Y[k] = {\cal FT}\left \{ X[n] \right \} (k)
 | |
| \end{displaymath}
 | |
|  -->
 | |
| 
 | |
| <IMG
 | |
|  WIDTH="151" HEIGHT="28" BORDER="0"
 | |
|  SRC="img1064.png"
 | |
|  ALT="\begin{displaymath}
 | |
| Y[k] = {\cal FT}\left \{ X[n] \right \} (k)
 | |
| \end{displaymath}">
 | |
| </DIV>
 | |
| <BR CLEAR="ALL">
 | |
| <P></P>
 | |
| <BR><P></P>
 | |
| <DIV ALIGN="CENTER">
 | |
| <!-- MATH
 | |
|  \begin{displaymath}
 | |
| = {{\left [ {U^{-k}} \right ]} ^ {0}} X[0] +
 | |
|     {{\left [ {U^{-k}} \right ]} ^ {1}} X[1] +
 | |
|     \cdots +
 | |
|     {{\left [ {U^{-k}} \right ]} ^ {N-1}} X[N-1]
 | |
| \end{displaymath}
 | |
|  -->
 | |
| 
 | |
| <IMG
 | |
|  WIDTH="393" HEIGHT="30" BORDER="0"
 | |
|  SRC="img1065.png"
 | |
|  ALT="\begin{displaymath}
 | |
| = {{\left [ {U^{-k}} \right ]} ^ {0}} X[0] +
 | |
| {{\left [ {U^...
 | |
| ...X[1] +
 | |
| \cdots +
 | |
| {{\left [ {U^{-k}} \right ]} ^ {N-1}} X[N-1]
 | |
| \end{displaymath}">
 | |
| </DIV>
 | |
| <BR CLEAR="ALL">
 | |
| <P></P>
 | |
| <BR><P></P>
 | |
| <DIV ALIGN="CENTER">
 | |
| <!-- MATH
 | |
|  \begin{displaymath}
 | |
| = {{\left [ {U^{0}} \right ]} ^ {k}} X[0] +
 | |
|     {{\left [ {U^{-1}} \right ]} ^ {k}} X[1] +
 | |
|     \cdots +
 | |
|     {{\left [ {U^{-(N-1)}} \right ]} ^ {k}} X[N-1]
 | |
| \end{displaymath}
 | |
|  -->
 | |
| 
 | |
| <IMG
 | |
|  WIDTH="395" HEIGHT="39" BORDER="0"
 | |
|  SRC="img1066.png"
 | |
|  ALT="\begin{displaymath}
 | |
| = {{\left [ {U^{0}} \right ]} ^ {k}} X[0] +
 | |
| {{\left [ {U^{...
 | |
| ...1] +
 | |
| \cdots +
 | |
| {{\left [ {U^{-(N-1)}} \right ]} ^ {k}} X[N-1]
 | |
| \end{displaymath}">
 | |
| </DIV>
 | |
| <BR CLEAR="ALL">
 | |
| <P></P>
 | |
| In the second version we rearranged the exponents to show that <IMG
 | |
|  WIDTH="33" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 | |
|  SRC="img1062.png"
 | |
|  ALT="$Y[k]$"> is a sum
 | |
| of complex sinusoids, with complex amplitudes <IMG
 | |
|  WIDTH="40" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 | |
|  SRC="img1067.png"
 | |
|  ALT="$X[m]$"> and frequencies <IMG
 | |
|  WIDTH="40" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
 | |
|  SRC="img1068.png"
 | |
|  ALT="$-m\omega$">
 | |
| for <!-- MATH
 | |
|  $m = 0, \ldots, N-1$
 | |
|  -->
 | |
| <IMG
 | |
|  WIDTH="123" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 | |
|  SRC="img1069.png"
 | |
|  ALT="$m = 0, \ldots, N-1$">.  In other words, <IMG
 | |
|  WIDTH="33" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 | |
|  SRC="img1062.png"
 | |
|  ALT="$Y[k]$"> can be considered as a
 | |
| Fourier series in its own right, whose <IMG
 | |
|  WIDTH="17" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
 | |
|  SRC="img111.png"
 | |
|  ALT="$m$">th component has strength <IMG
 | |
|  WIDTH="53" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 | |
|  SRC="img1070.png"
 | |
|  ALT="$X[-m]$">.
 | |
| (The expression <IMG
 | |
|  WIDTH="53" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 | |
|  SRC="img1070.png"
 | |
|  ALT="$X[-m]$"> makes sense because <IMG
 | |
|  WIDTH="17" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
 | |
|  SRC="img670.png"
 | |
|  ALT="$X$"> is a periodic signal). 
 | |
| We can also express the amplitude of the partials of <IMG
 | |
|  WIDTH="33" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 | |
|  SRC="img1062.png"
 | |
|  ALT="$Y[k]$"> in terms of its own
 | |
| Fourier transform.  Equating the two gives: 
 | |
| <BR><P></P>
 | |
| <DIV ALIGN="CENTER">
 | |
| <!-- MATH
 | |
|  \begin{displaymath}
 | |
| {1 \over N} {\cal FT} \left \{ Y[k] \right \} (m) = X[-m]
 | |
| \end{displaymath}
 | |
|  -->
 | |
| 
 | |
| <IMG
 | |
|  WIDTH="190" HEIGHT="38" BORDER="0"
 | |
|  SRC="img1071.png"
 | |
|  ALT="\begin{displaymath}
 | |
| {1 \over N} {\cal FT} \left \{ Y[k] \right \} (m) = X[-m]
 | |
| \end{displaymath}">
 | |
| </DIV>
 | |
| <BR CLEAR="ALL">
 | |
| <P></P>
 | |
| This means in turn that <IMG
 | |
|  WIDTH="53" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 | |
|  SRC="img1070.png"
 | |
|  ALT="$X[-m]$"> can be obtained by summing sinusoids with
 | |
| amplitudes <IMG
 | |
|  WIDTH="55" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 | |
|  SRC="img1072.png"
 | |
|  ALT="$Y[k]/N$">.  Setting <IMG
 | |
|  WIDTH="60" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
 | |
|  SRC="img1073.png"
 | |
|  ALT="$n = -m$"> gives:
 | |
| <BR><P></P>
 | |
| <DIV ALIGN="CENTER">
 | |
| <!-- MATH
 | |
|  \begin{displaymath}
 | |
| X[n] = {1 \over N} {\cal FT} \left \{ Y[k] \right \} (-n)
 | |
| \end{displaymath}
 | |
|  -->
 | |
| 
 | |
| <IMG
 | |
|  WIDTH="183" HEIGHT="38" BORDER="0"
 | |
|  SRC="img1074.png"
 | |
|  ALT="\begin{displaymath}
 | |
| X[n] = {1 \over N} {\cal FT} \left \{ Y[k] \right \} (-n)
 | |
| \end{displaymath}">
 | |
| </DIV>
 | |
| <BR CLEAR="ALL">
 | |
| <P></P>
 | |
| <BR><P></P>
 | |
| <DIV ALIGN="CENTER">
 | |
| <!-- MATH
 | |
|  \begin{displaymath}
 | |
| = {{\left [ {U^{0}} \right ]} ^ {n}} Y[0] +
 | |
|     {{\left [ {U^{1}} \right ]} ^ {n}} Y[1] +
 | |
|     \cdots +
 | |
|     {{\left [ {U^{N-1}} \right ]} ^ {n}} Y[N-1]
 | |
| \end{displaymath}
 | |
|  -->
 | |
| 
 | |
| <IMG
 | |
|  WIDTH="360" HEIGHT="30" BORDER="0"
 | |
|  SRC="img1075.png"
 | |
|  ALT="\begin{displaymath}
 | |
| = {{\left [ {U^{0}} \right ]} ^ {n}} Y[0] +
 | |
| {{\left [ {U^{...
 | |
| ...Y[1] +
 | |
| \cdots +
 | |
| {{\left [ {U^{N-1}} \right ]} ^ {n}} Y[N-1]
 | |
| \end{displaymath}">
 | |
| </DIV>
 | |
| <BR CLEAR="ALL">
 | |
| <P></P>
 | |
| This shows that any periodic <IMG
 | |
|  WIDTH="36" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 | |
|  SRC="img669.png"
 | |
|  ALT="$X[n]$"> can indeed be obtained as a sum of
 | |
| sinusoids.  Further, the formula explicitly shows how to reconstruct <IMG
 | |
|  WIDTH="36" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 | |
|  SRC="img669.png"
 | |
|  ALT="$X[n]$">
 | |
| from its Fourier transform <IMG
 | |
|  WIDTH="33" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 | |
|  SRC="img1062.png"
 | |
|  ALT="$Y[k]$">, if we know its value for the integers <!-- MATH
 | |
|  $k=0,
 | |
| \ldots, N-1$
 | |
|  -->
 | |
| <IMG
 | |
|  WIDTH="118" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 | |
|  SRC="img1076.png"
 | |
|  ALT="$k=0,
 | |
| \ldots, N-1$">.
 | |
| 
 | |
| <P>
 | |
| <HR>
 | |
| <!--Navigation Panel-->
 | |
| <A NAME="tex2html3059"
 | |
|   HREF="node167.html">
 | |
| <IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
 | |
|  SRC="next.png"></A> 
 | |
| <A NAME="tex2html3053"
 | |
|   HREF="node164.html">
 | |
| <IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
 | |
|  SRC="up.png"></A> 
 | |
| <A NAME="tex2html3049"
 | |
|   HREF="node165.html">
 | |
| <IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
 | |
|  SRC="prev.png"></A> 
 | |
| <A NAME="tex2html3055"
 | |
|   HREF="node4.html">
 | |
| <IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
 | |
|  SRC="contents.png"></A> 
 | |
| <A NAME="tex2html3057"
 | |
|   HREF="node201.html">
 | |
| <IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
 | |
|  SRC="index.png"></A> 
 | |
| <BR>
 | |
| <B> Next:</B> <A NAME="tex2html3060"
 | |
|   HREF="node167.html">Properties of Fourier transforms</A>
 | |
| <B> Up:</B> <A NAME="tex2html3054"
 | |
|   HREF="node164.html">Fourier analysis of periodic</A>
 | |
| <B> Previous:</B> <A NAME="tex2html3050"
 | |
|   HREF="node165.html">Periodicity of the Fourier</A>
 | |
|    <B>  <A NAME="tex2html3056"
 | |
|   HREF="node4.html">Contents</A></B> 
 | |
|    <B>  <A NAME="tex2html3058"
 | |
|   HREF="node201.html">Index</A></B> 
 | |
| <!--End of Navigation Panel-->
 | |
| <ADDRESS>
 | |
| Miller Puckette
 | |
| 2006-12-30
 | |
| </ADDRESS>
 | |
| </BODY>
 | |
| </HTML>
 |