<!DOCTYPE html> <!--Converted with LaTeX2HTML 2002-2-1 (1.71) original version by: Nikos Drakos, CBLU, University of Leeds * revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan * with significant contributions from: Jens Lippmann, Marek Rouchal, Martin Wilck and others --> <HTML> <HEAD> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <TITLE>Real outputs from complex filters</TITLE> <META NAME="description" CONTENT="Real outputs from complex filters"> <META NAME="keywords" CONTENT="book"> <META NAME="resource-type" CONTENT="document"> <META NAME="distribution" CONTENT="global"> <META NAME="Generator" CONTENT="LaTeX2HTML v2002-2-1"> <META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css"> <LINK REL="STYLESHEET" HREF="book.css"> <LINK REL="next" HREF="node138.html"> <LINK REL="previous" HREF="node136.html"> <LINK REL="up" HREF="node132.html"> <LINK REL="next" HREF="node138.html"> </HEAD> <BODY > <!--Navigation Panel--> <A NAME="tex2html2623" HREF="node138.html"> <IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next" SRC="next.png"></A> <A NAME="tex2html2617" HREF="node132.html"> <IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up" SRC="up.png"></A> <A NAME="tex2html2611" HREF="node136.html"> <IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous" SRC="prev.png"></A> <A NAME="tex2html2619" HREF="node4.html"> <IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents" SRC="contents.png"></A> <A NAME="tex2html2621" HREF="node201.html"> <IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index" SRC="index.png"></A> <BR> <B> Next:</B> <A NAME="tex2html2624" HREF="node138.html">Two recirculating filters for</A> <B> Up:</B> <A NAME="tex2html2618" HREF="node132.html">Elementary filters</A> <B> Previous:</B> <A NAME="tex2html2612" HREF="node136.html">Compound filters</A> <B> <A NAME="tex2html2620" HREF="node4.html">Contents</A></B> <B> <A NAME="tex2html2622" HREF="node201.html">Index</A></B> <BR> <BR> <!--End of Navigation Panel--> <H2><A NAME="SECTION001225000000000000000"> Real outputs from complex filters</A> </H2> <P> In most applications, we start with a real-valued signal to filter and we need a real-valued output, but in general, a compound filter with a transfer function as above will give a complex-valued output. However, we can construct filters with non-real-valued coefficients which nonetheless give real-valued outputs, so that the analysis that we carry out using complex numbers can be used to predict, explain, and control real-valued output signals. We do this by pairing each elementary filter (with coefficient <IMG WIDTH="15" HEIGHT="14" ALIGN="BOTTOM" BORDER="0" SRC="img880.png" ALT="$P$"> or <IMG WIDTH="16" HEIGHT="30" ALIGN="MIDDLE" BORDER="0" SRC="img42.png" ALT="$Q$">) with another having as its coefficient the complex conjugate <IMG WIDTH="15" HEIGHT="17" ALIGN="BOTTOM" BORDER="0" SRC="img890.png" ALT="$\overline{P}$"> or <IMG WIDTH="16" HEIGHT="36" ALIGN="MIDDLE" BORDER="0" SRC="img872.png" ALT="$\overline{Q}$">. <P> For example, putting two non-recirculating filters, with coefficients <IMG WIDTH="16" HEIGHT="30" ALIGN="MIDDLE" BORDER="0" SRC="img42.png" ALT="$Q$"> and <IMG WIDTH="16" HEIGHT="36" ALIGN="MIDDLE" BORDER="0" SRC="img872.png" ALT="$\overline{Q}$">, in series gives a transfer function equal to: <BR><P></P> <DIV ALIGN="CENTER"> <!-- MATH \begin{displaymath} H(Z) = (1 - {Q}{Z^{-1}}) \cdot (1 - \overline{Q}{Z^{-1}}) \end{displaymath} --> <IMG WIDTH="233" HEIGHT="28" BORDER="0" SRC="img891.png" ALT="\begin{displaymath} H(Z) = (1 - {Q}{Z^{-1}}) \cdot (1 - \overline{Q}{Z^{-1}}) \end{displaymath}"> </DIV> <BR CLEAR="ALL"> <P></P> which has the property that: <BR><P></P> <DIV ALIGN="CENTER"> <!-- MATH \begin{displaymath} H(\overline{Z}) = \overline{H(Z)} \end{displaymath} --> <IMG WIDTH="99" HEIGHT="28" BORDER="0" SRC="img892.png" ALT="\begin{displaymath} H(\overline{Z}) = \overline{H(Z)} \end{displaymath}"> </DIV> <BR CLEAR="ALL"> <P></P> Now if we put any real-valued sinusoid: <BR><P></P> <DIV ALIGN="CENTER"> <!-- MATH \begin{displaymath} {X_n} = 2 \, \mathrm{re}(A{Z^n}) = A{Z^n} + \overline{A} {{\overline{Z}}^n} \end{displaymath} --> <IMG WIDTH="217" HEIGHT="28" BORDER="0" SRC="img893.png" ALT="\begin{displaymath} {X_n} = 2 \, \mathrm{re}(A{Z^n}) = A{Z^n} + \overline{A} {{\overline{Z}}^n} \end{displaymath}"> </DIV> <BR CLEAR="ALL"> <P></P> we get out: <BR><P></P> <DIV ALIGN="CENTER"> <!-- MATH \begin{displaymath} A \cdot H(Z) \cdot {Z^n} + \overline{A} \cdot \overline{H(Z)} \cdot {{\overline{Z}}^n} \end{displaymath} --> <IMG WIDTH="207" HEIGHT="28" BORDER="0" SRC="img894.png" ALT="\begin{displaymath} A \cdot H(Z) \cdot {Z^n} + \overline{A} \cdot \overline{H(Z)} \cdot {{\overline{Z}}^n} \end{displaymath}"> </DIV> <BR CLEAR="ALL"> <P></P> which, by inspection, is another real sinusoid. Here we're using two properties of complex conjugates. First, you can add and multiply them at will: <BR><P></P> <DIV ALIGN="CENTER"> <!-- MATH \begin{displaymath} \overline{A+B} = \overline{A} + \overline{B} \end{displaymath} --> <IMG WIDTH="110" HEIGHT="25" BORDER="0" SRC="img895.png" ALT="\begin{displaymath} \overline{A+B} = \overline{A} + \overline{B} \end{displaymath}"> </DIV> <BR CLEAR="ALL"> <P></P> <BR><P></P> <DIV ALIGN="CENTER"> <!-- MATH \begin{displaymath} \overline{AB} = \overline{A} \cdot \overline{B} \end{displaymath} --> <IMG WIDTH="82" HEIGHT="24" BORDER="0" SRC="img896.png" ALT="\begin{displaymath} \overline{AB} = \overline{A} \cdot \overline{B} \end{displaymath}"> </DIV> <BR CLEAR="ALL"> <P></P> and second, anything plus its complex conjugate is real, and is in fact twice its real part: <BR><P></P> <DIV ALIGN="CENTER"> <!-- MATH \begin{displaymath} A + \overline{A} = 2 \, \mathrm{re} (A) \end{displaymath} --> <IMG WIDTH="112" HEIGHT="28" BORDER="0" SRC="img897.png" ALT="\begin{displaymath} A + \overline{A} = 2 \, \mathrm{re} (A) \end{displaymath}"> </DIV> <BR CLEAR="ALL"> <P></P> This result for two conjugate filters extends to any compound filter; in general, we always get a real-valued output from a real-valued input if we arrange that each coefficient <IMG WIDTH="21" HEIGHT="30" ALIGN="MIDDLE" BORDER="0" SRC="img898.png" ALT="$Q_i$"> and <IMG WIDTH="19" HEIGHT="30" ALIGN="MIDDLE" BORDER="0" SRC="img899.png" ALT="$P_i$"> in the compound filter is either real-valued, or else appears in a pair with its complex conjugate. <P> <HR> <!--Navigation Panel--> <A NAME="tex2html2623" HREF="node138.html"> <IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next" SRC="next.png"></A> <A NAME="tex2html2617" HREF="node132.html"> <IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up" SRC="up.png"></A> <A NAME="tex2html2611" HREF="node136.html"> <IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous" SRC="prev.png"></A> <A NAME="tex2html2619" HREF="node4.html"> <IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents" SRC="contents.png"></A> <A NAME="tex2html2621" HREF="node201.html"> <IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index" SRC="index.png"></A> <BR> <B> Next:</B> <A NAME="tex2html2624" HREF="node138.html">Two recirculating filters for</A> <B> Up:</B> <A NAME="tex2html2618" HREF="node132.html">Elementary filters</A> <B> Previous:</B> <A NAME="tex2html2612" HREF="node136.html">Compound filters</A> <B> <A NAME="tex2html2620" HREF="node4.html">Contents</A></B> <B> <A NAME="tex2html2622" HREF="node201.html">Index</A></B> <!--End of Navigation Panel--> <ADDRESS> Miller Puckette 2006-12-30 </ADDRESS> </BODY> </HTML>