<!DOCTYPE html> <!--Converted with LaTeX2HTML 2002-2-1 (1.71) original version by: Nikos Drakos, CBLU, University of Leeds * revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan * with significant contributions from: Jens Lippmann, Marek Rouchal, Martin Wilck and others --> <HTML> <HEAD> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <TITLE>Superposing Signals</TITLE> <META NAME="description" CONTENT="Superposing Signals"> <META NAME="keywords" CONTENT="book"> <META NAME="resource-type" CONTENT="document"> <META NAME="distribution" CONTENT="global"> <META NAME="Generator" CONTENT="LaTeX2HTML v2002-2-1"> <META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css"> <LINK REL="STYLESHEET" HREF="book.css"> <LINK REL="next" HREF="node14.html"> <LINK REL="previous" HREF="node12.html"> <LINK REL="up" HREF="node7.html"> <LINK REL="next" HREF="node14.html"> </HEAD> <BODY > <!--Navigation Panel--> <A NAME="tex2html735" HREF="node14.html"> <IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next" SRC="next.png"></A> <A NAME="tex2html729" HREF="node7.html"> <IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up" SRC="up.png"></A> <A NAME="tex2html723" HREF="node12.html"> <IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous" SRC="prev.png"></A> <A NAME="tex2html731" HREF="node4.html"> <IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents" SRC="contents.png"></A> <A NAME="tex2html733" HREF="node201.html"> <IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index" SRC="index.png"></A> <BR> <B> Next:</B> <A NAME="tex2html736" HREF="node14.html">Periodic Signals</A> <B> Up:</B> <A NAME="tex2html730" HREF="node7.html">Sinusoids, amplitude and frequency</A> <B> Previous:</B> <A NAME="tex2html724" HREF="node12.html">Synthesizing a sinusoid</A> <B> <A NAME="tex2html732" HREF="node4.html">Contents</A></B> <B> <A NAME="tex2html734" HREF="node201.html">Index</A></B> <BR> <BR> <!--End of Navigation Panel--> <H1><A NAME="SECTION00560000000000000000"></A> <A NAME="sect1.combine"></A> <BR> Superposing Signals </H1> <P> If a signal <IMG WIDTH="31" HEIGHT="32" ALIGN="MIDDLE" BORDER="0" SRC="img80.png" ALT="$x[n]$"> has a peak or RMS amplitude <IMG WIDTH="15" HEIGHT="14" ALIGN="BOTTOM" BORDER="0" SRC="img23.png" ALT="$A$"> (in some fixed window), then the scaled signal <IMG WIDTH="51" HEIGHT="32" ALIGN="MIDDLE" BORDER="0" SRC="img122.png" ALT="$k \cdot x[n]$"> (where <IMG WIDTH="41" HEIGHT="30" ALIGN="MIDDLE" BORDER="0" SRC="img123.png" ALT="$k \ge 0$">) has amplitude <IMG WIDTH="24" HEIGHT="14" ALIGN="BOTTOM" BORDER="0" SRC="img124.png" ALT="$kA$">. The mean power of the scaled signal changes by a factor of <IMG WIDTH="19" HEIGHT="16" ALIGN="BOTTOM" BORDER="0" SRC="img125.png" ALT="$k^2$">. The situation gets more complicated when two different signals are added together; just knowing the amplitudes of the two does not suffice to know the amplitude of the sum. The two amplitude measures do at least obey triangle inequalities; for any two signals <IMG WIDTH="31" HEIGHT="32" ALIGN="MIDDLE" BORDER="0" SRC="img80.png" ALT="$x[n]$"> and <IMG WIDTH="30" HEIGHT="32" ALIGN="MIDDLE" BORDER="0" SRC="img2.png" ALT="$y[n]$">, <BR><P></P> <DIV ALIGN="CENTER"> <!-- MATH \begin{displaymath} {A_{\mathrm{peak}}} \{x[n]\} + {A_{\mathrm{peak}}} \{y[n]\} \ge {A_{\mathrm{peak}}} \{x[n]+y[n]\} \end{displaymath} --> <IMG WIDTH="332" HEIGHT="29" BORDER="0" SRC="img126.png" ALT="\begin{displaymath} {A_{\mathrm{peak}}} \{x[n]\} + {A_{\mathrm{peak}}} \{y[n]\} \ge {A_{\mathrm{peak}}} \{x[n]+y[n]\} \end{displaymath}"> </DIV> <BR CLEAR="ALL"> <P></P> <BR><P></P> <DIV ALIGN="CENTER"> <!-- MATH \begin{displaymath} {A_{\mathrm{RMS}}} \{x[n]\} + {A_{\mathrm{RMS}}} \{y[n]\} \ge {A_{\mathrm{RMS}}} \{x[n]+y[n]\} \end{displaymath} --> <IMG WIDTH="337" HEIGHT="28" BORDER="0" SRC="img127.png" ALT="\begin{displaymath} {A_{\mathrm{RMS}}} \{x[n]\} + {A_{\mathrm{RMS}}} \{y[n]\} \ge {A_{\mathrm{RMS}}} \{x[n]+y[n]\} \end{displaymath}"> </DIV> <BR CLEAR="ALL"> <P></P> If we fix a window from <IMG WIDTH="20" HEIGHT="14" ALIGN="BOTTOM" BORDER="0" SRC="img86.png" ALT="$M$"> to <IMG WIDTH="82" HEIGHT="30" ALIGN="MIDDLE" BORDER="0" SRC="img128.png" ALT="$N+M-1$"> as usual, we can write out the mean power of the sum of two signals: <A NAME="eq-meanpowersum"></A> <BR><P></P> <DIV ALIGN="CENTER"> <!-- MATH \begin{displaymath} P \{x[n] + y[n]\} = P \{x[n]\} + P \{y[n]\} + 2 \cdot {\mathrm{COV}} \{ x[n] , y[n] \} \end{displaymath} --> <IMG WIDTH="405" HEIGHT="28" BORDER="0" SRC="img129.png" ALT="\begin{displaymath} P \{x[n] + y[n]\} = P \{x[n]\} + P \{y[n]\} + 2 \cdot {\mathrm{COV}} \{ x[n] , y[n] \} \end{displaymath}"> </DIV> <BR CLEAR="ALL"> <P></P> where we have introduced the <A NAME="1161"></A><I>covariance</I> of two signals: <BR><P></P> <DIV ALIGN="CENTER"> <!-- MATH \begin{displaymath} {\mathrm{COV}} \{ x[n] , y[n] \} = { {x[M]y[M] + \cdots + x[M+N-1]y[M+N-1]} \over N } \end{displaymath} --> <IMG WIDTH="454" HEIGHT="40" BORDER="0" SRC="img130.png" ALT="\begin{displaymath} {\mathrm{COV}} \{ x[n] , y[n] \} = { {x[M]y[M] + \cdots + x[M+N-1]y[M+N-1]} \over N } \end{displaymath}"> </DIV> <BR CLEAR="ALL"> <P></P> The covariance may be positive, zero, or negative. Over a sufficiently large window, the covariance of two sinusoids with different frequencies is negligible compared to the mean power. Two signals which have no covariance are called <I>uncorrelated</I> (the correlation is the covariance normalized to lie between -1 and 1). In general, for two uncorrelated signals, the power of the sum is the sum of the powers: <BR><P></P> <DIV ALIGN="CENTER"> <!-- MATH \begin{displaymath} P \{x[n] + y[n]\} = P \{x[n]\} + P \{y[n]\} , \hspace{0.1in} \mathrm{whenever} \ {\mathrm{COV}} \{ x[n] , y[n] \} = 0 \end{displaymath} --> <IMG WIDTH="483" HEIGHT="28" BORDER="0" SRC="img131.png" ALT="\begin{displaymath} P \{x[n] + y[n]\} = P \{x[n]\} + P \{y[n]\} , \hspace{0.1in} \mathrm{whenever} \ {\mathrm{COV}} \{ x[n] , y[n] \} = 0 \end{displaymath}"> </DIV> <BR CLEAR="ALL"> <P></P> Put in terms of amplitude, this becomes: <BR><P></P> <DIV ALIGN="CENTER"> <!-- MATH \begin{displaymath} {{\left ( {A_{\mathrm{RMS}}} \{x[n]+y[n]\} \right ) } ^ 2} = {{\left ( {A_{\mathrm{RMS}}} \{x[n]\} \right ) } ^ 2} + {{\left ( {A_{\mathrm{RMS}}} \{y[n]\} \right ) } ^ 2} . \end{displaymath} --> <IMG WIDTH="398" HEIGHT="28" BORDER="0" SRC="img132.png" ALT="\begin{displaymath} {{\left ( {A_{\mathrm{RMS}}} \{x[n]+y[n]\} \right ) } ^ 2} ... ...2} + {{\left ( {A_{\mathrm{RMS}}} \{y[n]\} \right ) } ^ 2} . \end{displaymath}"> </DIV> <BR CLEAR="ALL"> <P></P> This is the familiar Pythagorean relation. So uncorrelated signals can be thought of as vectors at right angles to each other; positively correlated ones as having an acute angle between them, and negatively correlated as having an obtuse angle between them. <P> For example, if two uncorrelated signals both have RMS amplitude <IMG WIDTH="11" HEIGHT="13" ALIGN="BOTTOM" BORDER="0" SRC="img4.png" ALT="$a$">, the sum will have RMS amplitude <IMG WIDTH="33" HEIGHT="37" ALIGN="MIDDLE" BORDER="0" SRC="img133.png" ALT="${\sqrt 2} a$">. On the other hand if the two signals happen to be equal--the most correlated possible--the sum will have amplitude <IMG WIDTH="19" HEIGHT="13" ALIGN="BOTTOM" BORDER="0" SRC="img134.png" ALT="$2a$">, which is the maximum allowed by the triangle inequality. <P> <HR> <!--Navigation Panel--> <A NAME="tex2html735" HREF="node14.html"> <IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next" SRC="next.png"></A> <A NAME="tex2html729" HREF="node7.html"> <IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up" SRC="up.png"></A> <A NAME="tex2html723" HREF="node12.html"> <IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous" SRC="prev.png"></A> <A NAME="tex2html731" HREF="node4.html"> <IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents" SRC="contents.png"></A> <A NAME="tex2html733" HREF="node201.html"> <IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index" SRC="index.png"></A> <BR> <B> Next:</B> <A NAME="tex2html736" HREF="node14.html">Periodic Signals</A> <B> Up:</B> <A NAME="tex2html730" HREF="node7.html">Sinusoids, amplitude and frequency</A> <B> Previous:</B> <A NAME="tex2html724" HREF="node12.html">Synthesizing a sinusoid</A> <B> <A NAME="tex2html732" HREF="node4.html">Contents</A></B> <B> <A NAME="tex2html734" HREF="node201.html">Index</A></B> <!--End of Navigation Panel--> <ADDRESS> Miller Puckette 2006-12-30 </ADDRESS> </BODY> </HTML>