<!DOCTYPE html> <!--Converted with LaTeX2HTML 2002-2-1 (1.71) original version by: Nikos Drakos, CBLU, University of Leeds * revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan * with significant contributions from: Jens Lippmann, Marek Rouchal, Martin Wilck and others --> <HTML> <HEAD> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <TITLE>Recirculating delay networks</TITLE> <META NAME="description" CONTENT="Recirculating delay networks"> <META NAME="keywords" CONTENT="book"> <META NAME="resource-type" CONTENT="document"> <META NAME="distribution" CONTENT="global"> <META NAME="Generator" CONTENT="LaTeX2HTML v2002-2-1"> <META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css"> <LINK REL="STYLESHEET" HREF="book.css"> <LINK REL="next" HREF="node110.html"> <LINK REL="previous" HREF="node108.html"> <LINK REL="up" HREF="node104.html"> <LINK REL="next" HREF="node110.html"> </HEAD> <BODY > <!--Navigation Panel--> <A NAME="tex2html2185" HREF="node110.html"> <IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next" SRC="next.png"></A> <A NAME="tex2html2179" HREF="node104.html"> <IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up" SRC="up.png"></A> <A NAME="tex2html2173" HREF="node108.html"> <IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous" SRC="prev.png"></A> <A NAME="tex2html2181" HREF="node4.html"> <IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents" SRC="contents.png"></A> <A NAME="tex2html2183" HREF="node201.html"> <IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index" SRC="index.png"></A> <BR> <B> Next:</B> <A NAME="tex2html2186" HREF="node110.html">Power conservation and complex</A> <B> Up:</B> <A NAME="tex2html2180" HREF="node104.html">Time shifts and delays</A> <B> Previous:</B> <A NAME="tex2html2174" HREF="node108.html">Delay networks</A> <B> <A NAME="tex2html2182" HREF="node4.html">Contents</A></B> <B> <A NAME="tex2html2184" HREF="node201.html">Index</A></B> <BR> <BR> <!--End of Navigation Panel--> <H1><A NAME="SECTION001140000000000000000"></A> <A NAME="sect7.recirculatingcomb"></A> <BR> Recirculating delay networks </H1> <P> It is sometimes desirable to connect the outputs of one or more delays in a network back into their own or each others' inputs. Instead of getting one or several echos of the original sound as in the example above, we can potentially get an infinite number of echos, each one feeding back into the network to engender yet others. <P> The simplest example of a recirculating network is the <A NAME="7935"></A> <I>recirculating comb filter</I> whose block diagram is shown in Figure <A HREF="#fig07.07">7.7</A>. As with the earlier, simple comb filter, the input signal is sent down a delay line whose length is <IMG WIDTH="11" HEIGHT="14" ALIGN="BOTTOM" BORDER="0" SRC="img28.png" ALT="$d$"> samples. But now the delay line's output is also fed back to its input; the delay's input is the sum of the original input and the delay's output. The output is multiplied by a number <IMG WIDTH="11" HEIGHT="29" ALIGN="MIDDLE" BORDER="0" SRC="img29.png" ALT="$g$"> before feeding it back into its input. <P> <DIV ALIGN="CENTER"><A NAME="fig07.07"></A><A NAME="7940"></A> <TABLE> <CAPTION ALIGN="BOTTOM"><STRONG>Figure 7.7:</STRONG> Block diagram for a recirculating comb filter. Here <IMG WIDTH="11" HEIGHT="14" ALIGN="BOTTOM" BORDER="0" SRC="img28.png" ALT="$d$"> is the delay time in samples and <IMG WIDTH="11" HEIGHT="29" ALIGN="MIDDLE" BORDER="0" SRC="img29.png" ALT="$g$"> is the feedback coefficient.</CAPTION> <TR><TD><IMG WIDTH="125" HEIGHT="221" BORDER="0" SRC="img708.png" ALT="\begin{figure}\psfig{file=figs/fig07.07.ps}\end{figure}"></TD></TR> </TABLE> </DIV> <P> The time domain behavior of the recirculating comb filter is shown in Figure <A HREF="#fig07.08">7.8</A>. Here we consider the effect of sending an impulse into the network. We get back the original impulse, plus a series of echos, each in turn <IMG WIDTH="11" HEIGHT="14" ALIGN="BOTTOM" BORDER="0" SRC="img28.png" ALT="$d$"> samples after the previous one, and multiplied each time by the gain <IMG WIDTH="11" HEIGHT="29" ALIGN="MIDDLE" BORDER="0" SRC="img29.png" ALT="$g$">. In general, a delay network's output given an impulse as input is called the network's <A NAME="7944"></A><I>impulse response</I>. <P> <DIV ALIGN="CENTER"><A NAME="fig07.08"></A><A NAME="7948"></A> <TABLE> <CAPTION ALIGN="BOTTOM"><STRONG>Figure 7.8:</STRONG> Time-domain analysis of the recirculating comb filter, using an impulse as input.</CAPTION> <TR><TD><IMG WIDTH="440" HEIGHT="257" BORDER="0" SRC="img709.png" ALT="\begin{figure}\psfig{file=figs/fig07.08.ps}\end{figure}"></TD></TR> </TABLE> </DIV> <P> Note that we have chosen a gain <IMG WIDTH="11" HEIGHT="29" ALIGN="MIDDLE" BORDER="0" SRC="img29.png" ALT="$g$"> that is less than one in absolute value. If we chose a gain greater than one (or less than -1), each echo would have a larger magnitude than the previous one. Instead of falling exponentially as they do in the figure, they would grow exponentially. A recirculating network whose output eventually falls toward zero after its input terminates is called <A NAME="7951"></A><I>stable</I>; one whose output grows without bound is called <I>unstable</I>. <P> We can also analyse the recirculating comb filter in the frequency domain. The situation is now quite hard to analyze using real sinusoids, and so we get the first big payoff for having introduced complex numbers, which greatly simplify the analysis. <P> If, as before, we feed the input with the signal, <BR><P></P> <DIV ALIGN="CENTER"> <!-- MATH \begin{displaymath} X[n] = Z^n \end{displaymath} --> <IMG WIDTH="74" HEIGHT="28" BORDER="0" SRC="img710.png" ALT="\begin{displaymath} X[n] = Z^n \end{displaymath}"> </DIV> <BR CLEAR="ALL"> <P></P> with <IMG WIDTH="53" HEIGHT="32" ALIGN="MIDDLE" BORDER="0" SRC="img22.png" ALT="$\vert Z\vert=1$">, we can write the output as <BR><P></P> <DIV ALIGN="CENTER"> <!-- MATH \begin{displaymath} Y[n] = (1 + g{Z^{-d}} + {g^2}{Z^{-2d}} + \cdots) X[n] \end{displaymath} --> <IMG WIDTH="270" HEIGHT="28" BORDER="0" SRC="img711.png" ALT="\begin{displaymath} Y[n] = (1 + g{Z^{-d}} + {g^2}{Z^{-2d}} + \cdots) X[n] \end{displaymath}"> </DIV> <BR CLEAR="ALL"> <P></P> Here the terms in the sum come from the series of discrete echos. It follows that the amplitude of the output is: <BR><P></P> <DIV ALIGN="CENTER"> <!-- MATH \begin{displaymath} H = 1 + g{Z^{-d}} + {(g{Z^{-d}})} ^ 2 + \cdots \end{displaymath} --> <IMG WIDTH="214" HEIGHT="28" BORDER="0" SRC="img712.png" ALT="\begin{displaymath} H = 1 + g{Z^{-d}} + {(g{Z^{-d}})} ^ 2 + \cdots \end{displaymath}"> </DIV> <BR CLEAR="ALL"> <P></P> This is a geometric series; we can sum it using the standard technique. First multiply both sides by <IMG WIDTH="41" HEIGHT="35" ALIGN="MIDDLE" BORDER="0" SRC="img713.png" ALT="$g{Z^{-d}}$"> to give: <BR><P></P> <DIV ALIGN="CENTER"> <!-- MATH \begin{displaymath} g{Z^{-d}} H = g{Z^{-d}} + {(g{Z^{-d}})} ^ 2 + {(g{Z^{-d}})} ^ 3 + \cdots \end{displaymath} --> <IMG WIDTH="300" HEIGHT="28" BORDER="0" SRC="img714.png" ALT="\begin{displaymath} g{Z^{-d}} H = g{Z^{-d}} + {(g{Z^{-d}})} ^ 2 + {(g{Z^{-d}})} ^ 3 + \cdots \end{displaymath}"> </DIV> <BR CLEAR="ALL"> <P></P> and subtract from the original equation to give: <BR><P></P> <DIV ALIGN="CENTER"> <!-- MATH \begin{displaymath} H - g{Z^{-d}} H = 1 \end{displaymath} --> <IMG WIDTH="115" HEIGHT="27" BORDER="0" SRC="img715.png" ALT="\begin{displaymath} H - g{Z^{-d}} H = 1 \end{displaymath}"> </DIV> <BR CLEAR="ALL"> <P></P> Then solve for <IMG WIDTH="18" HEIGHT="14" ALIGN="BOTTOM" BORDER="0" SRC="img25.png" ALT="$H$">: <BR><P></P> <DIV ALIGN="CENTER"> <!-- MATH \begin{displaymath} H = {1 \over {1 - g{Z^{-d}}}} \end{displaymath} --> <IMG WIDTH="102" HEIGHT="41" BORDER="0" SRC="img716.png" ALT="\begin{displaymath} H = {1 \over {1 - g{Z^{-d}}}} \end{displaymath}"> </DIV> <BR CLEAR="ALL"> <P></P> <P> A faster (but slightly less intuitive) method to get the same result is to examine the recirculating network itself to yield an equation for <IMG WIDTH="18" HEIGHT="14" ALIGN="BOTTOM" BORDER="0" SRC="img25.png" ALT="$H$">, as follows. We named the input <IMG WIDTH="36" HEIGHT="32" ALIGN="MIDDLE" BORDER="0" SRC="img669.png" ALT="$X[n]$"> and the output <IMG WIDTH="34" HEIGHT="32" ALIGN="MIDDLE" BORDER="0" SRC="img717.png" ALT="$Y[n]$">. The signal going into the delay line is the output <IMG WIDTH="34" HEIGHT="32" ALIGN="MIDDLE" BORDER="0" SRC="img717.png" ALT="$Y[n]$">, and passing this through the delay line and multiplier gives <BR><P></P> <DIV ALIGN="CENTER"> <!-- MATH \begin{displaymath} Y[n] \cdot g{Z^{-d}} \end{displaymath} --> <IMG WIDTH="79" HEIGHT="28" BORDER="0" SRC="img718.png" ALT="\begin{displaymath} Y[n] \cdot g{Z^{-d}} \end{displaymath}"> </DIV> <BR CLEAR="ALL"> <P></P> This plus the input is just the output signal again, so: <BR><P></P> <DIV ALIGN="CENTER"> <!-- MATH \begin{displaymath} Y[n] = X[n]+Y[n] \cdot g{Z^{-d}} \end{displaymath} --> <IMG WIDTH="185" HEIGHT="28" BORDER="0" SRC="img719.png" ALT="\begin{displaymath} Y[n] = X[n]+Y[n] \cdot g{Z^{-d}} \end{displaymath}"> </DIV> <BR CLEAR="ALL"> <P></P> and dividing by <IMG WIDTH="36" HEIGHT="32" ALIGN="MIDDLE" BORDER="0" SRC="img669.png" ALT="$X[n]$"> and using <IMG WIDTH="111" HEIGHT="32" ALIGN="MIDDLE" BORDER="0" SRC="img720.png" ALT="$H=Y[n]/X[n]$"> gives: <BR><P></P> <DIV ALIGN="CENTER"> <!-- MATH \begin{displaymath} H = 1 + Hg{Z^{-d}} \end{displaymath} --> <IMG WIDTH="115" HEIGHT="27" BORDER="0" SRC="img721.png" ALT="\begin{displaymath} H = 1 + Hg{Z^{-d}} \end{displaymath}"> </DIV> <BR CLEAR="ALL"> <P></P> This is equivalent to the earlier equation for <IMG WIDTH="18" HEIGHT="14" ALIGN="BOTTOM" BORDER="0" SRC="img25.png" ALT="$H$">. <P> Now we would like to make a graph of the frequency response (the gain as a function of frequency) as we did for non-recirculating comb filters in Figure <A HREF="node108.html#fig07.06">7.6</A>. This again requires that we make a preliminary picture in the complex plane. We would like to estimate the magnitude of <IMG WIDTH="18" HEIGHT="14" ALIGN="BOTTOM" BORDER="0" SRC="img25.png" ALT="$H$"> equal to: <BR><P></P> <DIV ALIGN="CENTER"> <!-- MATH \begin{displaymath} |H| = {1 \over {|1 - g{Z^{-d}}|}} \end{displaymath} --> <IMG WIDTH="118" HEIGHT="42" BORDER="0" SRC="img722.png" ALT="\begin{displaymath} \vert H\vert = {1 \over {\vert 1 - g{Z^{-d}}\vert}} \end{displaymath}"> </DIV> <BR CLEAR="ALL"> <P></P> where we used the multiplicative property of magnitudes to conclude that the magnitude of a (complex) reciprocal is the reciprocal of a (real) magnitude. Figure <A HREF="#fig07.09">7.9</A> shows the situation graphically. The gain <IMG WIDTH="26" HEIGHT="32" ALIGN="MIDDLE" BORDER="0" SRC="img30.png" ALT="$\vert H\vert$"> is the reciprocal of the length of the segment reaching from the point 1 to the point <IMG WIDTH="41" HEIGHT="35" ALIGN="MIDDLE" BORDER="0" SRC="img713.png" ALT="$g{Z^{-d}}$">. Figure <A HREF="#fig07.10">7.10</A> shows a graph of the frequency response <IMG WIDTH="26" HEIGHT="32" ALIGN="MIDDLE" BORDER="0" SRC="img30.png" ALT="$\vert H\vert$"> as a function of the angular frequency <!-- MATH $\omega = \angle(Z)$ --> <IMG WIDTH="69" HEIGHT="32" ALIGN="MIDDLE" BORDER="0" SRC="img678.png" ALT="$\omega = \angle(Z)$">. <P> <DIV ALIGN="CENTER"><A NAME="fig07.09"></A><A NAME="7976"></A> <TABLE> <CAPTION ALIGN="BOTTOM"><STRONG>Figure 7.9:</STRONG> Diagram in the complex plane for approximating the output gain <IMG WIDTH="26" HEIGHT="32" ALIGN="MIDDLE" BORDER="0" SRC="img30.png" ALT="$\vert H\vert$"> of the recirculating comb filters at three different frequencies: 0, and the arguments of two unit complex numbers <IMG WIDTH="20" HEIGHT="14" ALIGN="BOTTOM" BORDER="0" SRC="img31.png" ALT="$W$"> and <IMG WIDTH="15" HEIGHT="14" ALIGN="BOTTOM" BORDER="0" SRC="img20.png" ALT="$Z$">; <IMG WIDTH="20" HEIGHT="14" ALIGN="BOTTOM" BORDER="0" SRC="img31.png" ALT="$W$"> is chosen to give a gain about 3 dB below the peak.</CAPTION> <TR><TD><IMG WIDTH="339" HEIGHT="379" BORDER="0" SRC="img723.png" ALT="\begin{figure}\psfig{file=figs/fig07.09.ps}\end{figure}"></TD></TR> </TABLE> </DIV> <P> <DIV ALIGN="CENTER"><A NAME="fig07.10"></A><A NAME="7981"></A> <TABLE> <CAPTION ALIGN="BOTTOM"><STRONG>Figure 7.10:</STRONG> Frequency response of the recirculating comb filter with <IMG WIDTH="53" HEIGHT="29" ALIGN="MIDDLE" BORDER="0" SRC="img32.png" ALT="$g = 0.8$">. The peak gain is <IMG WIDTH="67" HEIGHT="32" ALIGN="MIDDLE" BORDER="0" SRC="img33.png" ALT="$1/(1-g)$"> = 5. Peaks are much narrower than for the non-recirculating comb filter.</CAPTION> <TR><TD><IMG WIDTH="312" HEIGHT="148" BORDER="0" SRC="img724.png" ALT="\begin{figure}\psfig{file=figs/fig07.10.ps}\end{figure}"></TD></TR> </TABLE> </DIV> <P> Figure <A HREF="#fig07.09">7.9</A> can be used to analyze how the frequency response <IMG WIDTH="49" HEIGHT="32" ALIGN="MIDDLE" BORDER="0" SRC="img725.png" ALT="$\vert H(\omega)\vert$"> should behave qualitatively as a function of <IMG WIDTH="11" HEIGHT="29" ALIGN="MIDDLE" BORDER="0" SRC="img29.png" ALT="$g$">. The height and bandwidth of the peaks both depend on <IMG WIDTH="11" HEIGHT="29" ALIGN="MIDDLE" BORDER="0" SRC="img29.png" ALT="$g$">. The maximum value that <IMG WIDTH="26" HEIGHT="32" ALIGN="MIDDLE" BORDER="0" SRC="img30.png" ALT="$\vert H\vert$"> can attain is when <BR><P></P> <DIV ALIGN="CENTER"> <!-- MATH \begin{displaymath} {Z^{-d}} = 1 \end{displaymath} --> <IMG WIDTH="56" HEIGHT="24" BORDER="0" SRC="img726.png" ALT="\begin{displaymath} {Z^{-d}} = 1 \end{displaymath}"> </DIV> <BR CLEAR="ALL"> <P></P> This occurs at the frequencies <!-- MATH $\omega = 0, 2\pi/d , 4\pi/d , \ldots$ --> <IMG WIDTH="150" HEIGHT="32" ALIGN="MIDDLE" BORDER="0" SRC="img727.png" ALT="$\omega = 0, 2\pi/d , 4\pi/d , \ldots$"> as in the simple comb filter above. At these frequencies the gain reaches <BR><P></P> <DIV ALIGN="CENTER"> <!-- MATH \begin{displaymath} |H| = {1 \over {1 - g}} \end{displaymath} --> <IMG WIDTH="80" HEIGHT="41" BORDER="0" SRC="img728.png" ALT="\begin{displaymath} \vert H\vert = {1 \over {1 - g}} \end{displaymath}"> </DIV> <BR CLEAR="ALL"> <P></P> <P> The next important question is the bandwidth of the peaks in the frequency response. So we would like to find sinusoids <IMG WIDTH="29" HEIGHT="14" ALIGN="BOTTOM" BORDER="0" SRC="img729.png" ALT="$W^n$">, with frequency <IMG WIDTH="43" HEIGHT="32" ALIGN="MIDDLE" BORDER="0" SRC="img730.png" ALT="$\angle(W)$">, giving rise to a value of <IMG WIDTH="26" HEIGHT="32" ALIGN="MIDDLE" BORDER="0" SRC="img30.png" ALT="$\vert H\vert$"> that is, say, 3 decibels below the maximum. To do this, we return to Figure <A HREF="#fig07.09">7.9</A>, and try to place <IMG WIDTH="20" HEIGHT="14" ALIGN="BOTTOM" BORDER="0" SRC="img31.png" ALT="$W$"> so that the distance from the point 1 to the point <IMG WIDTH="46" HEIGHT="35" ALIGN="MIDDLE" BORDER="0" SRC="img731.png" ALT="$gW^{-d}$"> is about <IMG WIDTH="24" HEIGHT="37" ALIGN="MIDDLE" BORDER="0" SRC="img732.png" ALT="$\sqrt{2}$"> times the distance from 1 to <IMG WIDTH="11" HEIGHT="29" ALIGN="MIDDLE" BORDER="0" SRC="img29.png" ALT="$g$"> (since <IMG WIDTH="24" HEIGHT="37" ALIGN="MIDDLE" BORDER="0" SRC="img732.png" ALT="$\sqrt{2}$">:1 is a ratio of approximately 3 decibels). <P> We do this by arranging for the imaginary part of <IMG WIDTH="46" HEIGHT="35" ALIGN="MIDDLE" BORDER="0" SRC="img731.png" ALT="$gW^{-d}$"> to be roughly <IMG WIDTH="39" HEIGHT="29" ALIGN="MIDDLE" BORDER="0" SRC="img733.png" ALT="$1-g$"> or its negative, making a nearly isosceles right triangle between the points 1, <IMG WIDTH="39" HEIGHT="29" ALIGN="MIDDLE" BORDER="0" SRC="img733.png" ALT="$1-g$">, and <IMG WIDTH="46" HEIGHT="35" ALIGN="MIDDLE" BORDER="0" SRC="img731.png" ALT="$gW^{-d}$">. (Here we're supposing that <IMG WIDTH="11" HEIGHT="29" ALIGN="MIDDLE" BORDER="0" SRC="img29.png" ALT="$g$"> is at least 2/3 or so; otherwise this approximation isn't very good). The hypotenuse of a right isosceles triangle is always <IMG WIDTH="24" HEIGHT="37" ALIGN="MIDDLE" BORDER="0" SRC="img732.png" ALT="$\sqrt{2}$"> times the leg, and so the gain drops by that factor compared to its maximum. <P> We now make another approximation, that the imaginary part of <IMG WIDTH="46" HEIGHT="35" ALIGN="MIDDLE" BORDER="0" SRC="img731.png" ALT="$gW^{-d}$"> is approximately the angle in radians it cuts from the real axis: <BR><P></P> <DIV ALIGN="CENTER"> <!-- MATH \begin{displaymath} \pm(1-g) \approx \mathrm{im}({gW^{-d}}) \approx \angle({W^{-d}}) \end{displaymath} --> <IMG WIDTH="231" HEIGHT="28" BORDER="0" SRC="img734.png" ALT="\begin{displaymath} \pm(1-g) \approx \mathrm{im}({gW^{-d}}) \approx \angle({W^{-d}}) \end{displaymath}"> </DIV> <BR CLEAR="ALL"> <P></P> So the region of each peak reaching within 3 decibels of the maximum value is about <BR><P></P> <DIV ALIGN="CENTER"> <!-- MATH \begin{displaymath} (1-g)/d \end{displaymath} --> <IMG WIDTH="63" HEIGHT="28" BORDER="0" SRC="img735.png" ALT="\begin{displaymath} (1-g)/d \end{displaymath}"> </DIV> <BR CLEAR="ALL"> <P></P> (in radians) to either side of the peak. The bandwidth narrows (and the filter peaks become sharper) as <IMG WIDTH="11" HEIGHT="29" ALIGN="MIDDLE" BORDER="0" SRC="img29.png" ALT="$g$"> approaches its maximum value of <IMG WIDTH="11" HEIGHT="13" ALIGN="BOTTOM" BORDER="0" SRC="img262.png" ALT="$1$">. <P> As with the non-recirculating comb filter of Section <A HREF="node108.html#sect7.network">7.3</A>, the teeth of the comb are closer together for larger values of the delay <IMG WIDTH="11" HEIGHT="14" ALIGN="BOTTOM" BORDER="0" SRC="img28.png" ALT="$d$">. On the other hand, a delay of <IMG WIDTH="40" HEIGHT="14" ALIGN="BOTTOM" BORDER="0" SRC="img736.png" ALT="$d=1$"> (the shortest possible) gets only one tooth (at zero frequency) below the Nyquist frequency <IMG WIDTH="13" HEIGHT="13" ALIGN="BOTTOM" BORDER="0" SRC="img41.png" ALT="$\pi $"> (the next tooth, at <IMG WIDTH="21" HEIGHT="13" ALIGN="BOTTOM" BORDER="0" SRC="img16.png" ALT="$2\pi $">, corresponds again to a frequency of zero by foldover). So the recirculating comb filter with <IMG WIDTH="40" HEIGHT="14" ALIGN="BOTTOM" BORDER="0" SRC="img736.png" ALT="$d=1$"> is just a low-pass filter. Delay networks with one-sample delays will be the basis for designing many other kinds of digital filters in Chapter <A HREF="node127.html#chapter-filter">8</A>. <P> <HR> <!--Navigation Panel--> <A NAME="tex2html2185" HREF="node110.html"> <IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next" SRC="next.png"></A> <A NAME="tex2html2179" HREF="node104.html"> <IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up" SRC="up.png"></A> <A NAME="tex2html2173" HREF="node108.html"> <IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous" SRC="prev.png"></A> <A NAME="tex2html2181" HREF="node4.html"> <IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents" SRC="contents.png"></A> <A NAME="tex2html2183" HREF="node201.html"> <IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index" SRC="index.png"></A> <BR> <B> Next:</B> <A NAME="tex2html2186" HREF="node110.html">Power conservation and complex</A> <B> Up:</B> <A NAME="tex2html2180" HREF="node104.html">Time shifts and delays</A> <B> Previous:</B> <A NAME="tex2html2174" HREF="node108.html">Delay networks</A> <B> <A NAME="tex2html2182" HREF="node4.html">Contents</A></B> <B> <A NAME="tex2html2184" HREF="node201.html">Index</A></B> <!--End of Navigation Panel--> <ADDRESS> Miller Puckette 2006-12-30 </ADDRESS> </BODY> </HTML>