<!DOCTYPE html> <!--Converted with LaTeX2HTML 2002-2-1 (1.71) original version by: Nikos Drakos, CBLU, University of Leeds * revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan * with significant contributions from: Jens Lippmann, Marek Rouchal, Martin Wilck and others --> <HTML> <HEAD> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <TITLE>Units of Amplitude</TITLE> <META NAME="description" CONTENT="Units of Amplitude"> <META NAME="keywords" CONTENT="book"> <META NAME="resource-type" CONTENT="document"> <META NAME="distribution" CONTENT="global"> <META NAME="Generator" CONTENT="LaTeX2HTML v2002-2-1"> <META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css"> <LINK REL="STYLESHEET" HREF="book.css"> <LINK REL="next" HREF="node10.html"> <LINK REL="previous" HREF="node8.html"> <LINK REL="up" HREF="node7.html"> <LINK REL="next" HREF="node10.html"> </HEAD> <BODY > <!--Navigation Panel--> <A ID="tex2html679" HREF="node10.html"> <IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next" SRC="next.png"></A> <A ID="tex2html673" HREF="node7.html"> <IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up" SRC="up.png"></A> <A ID="tex2html667" HREF="node8.html"> <IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous" SRC="prev.png"></A> <A ID="tex2html675" HREF="node4.html"> <IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents" SRC="contents.png"></A> <A ID="tex2html677" HREF="node201.html"> <IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index" SRC="index.png"></A> <BR> <B> Next:</B> <A ID="tex2html680" HREF="node10.html">Controlling Amplitude</A> <B> Up:</B> <A ID="tex2html674" HREF="node7.html">Sinusoids, amplitude and frequency</A> <B> Previous:</B> <A ID="tex2html668" HREF="node8.html">Measures of Amplitude</A> <B> <A ID="tex2html676" HREF="node4.html">Contents</A></B> <B> <A ID="tex2html678" HREF="node201.html">Index</A></B> <BR> <BR> <!--End of Navigation Panel--> <H1><A ID="SECTION00520000000000000000"> Units of Amplitude</A> </H1> <P> Two amplitudes are often better compared using their ratio than their difference. Saying that one signal's amplitude is greater than another's by a factor of two might be more informative than saying it is greater by 30 millivolts. This is true for any measure of amplitude (RMS or peak, for instance). To facilitate comparisons, we often express amplitudes in logarithmic units called <A ID="1066"></A><I>decibels</I>. If <IMG WIDTH="11" HEIGHT="13" ALIGN="BOTTOM" BORDER="0" SRC="img4.png" ALT="$a$"> is the amplitude of a signal (either peak or RMS), then we can define the decibel (dB) level <IMG WIDTH="11" HEIGHT="14" ALIGN="BOTTOM" BORDER="0" SRC="img28.png" ALT="$d$"> as: <BR><P></P> <DIV ALIGN="CENTER"> <!-- MATH \begin{displaymath} d = 20 \cdot {{{\log}_{10}} ( {a / {a_0}} )} \end{displaymath} --> <IMG WIDTH="133" HEIGHT="28" BORDER="0" SRC="img95.png" ALT="\begin{displaymath} d = 20 \cdot {{{\log}_{10}} ( {a / {a_0}} )} \end{displaymath}"> </DIV> <BR CLEAR="ALL"> <P></P> where <IMG WIDTH="19" HEIGHT="29" ALIGN="MIDDLE" BORDER="0" SRC="img96.png" ALT="$a_0$"> is a reference amplitude. This definition is set up so that, if we increase the signal power by a factor of ten (so that the amplitude increases by a factor of <IMG WIDTH="32" HEIGHT="37" ALIGN="MIDDLE" BORDER="0" SRC="img97.png" ALT="$\sqrt {10}$">), the logarithm will increase by <IMG WIDTH="27" HEIGHT="32" ALIGN="MIDDLE" BORDER="0" SRC="img98.png" ALT="$1/2$">, and so the value in decibels goes up (additively) by ten. An increase in amplitude by a factor of two corresponds to an increase of about 6.02 decibels; doubling power is an increase of 3.01 dB. The relationship between linear amplitude and amplitude in decibels is graphed in Figure <A HREF="#fig01.03">1.3</A>. <P> <DIV ALIGN="CENTER"><A ID="fig01.03"></A><A ID="1075"></A> <TABLE> <CAPTION ALIGN="BOTTOM"><STRONG>Figure 1.3:</STRONG> The relationship between decibel and linear scales of amplitude. The linear amplitude 1 is assigned to 0 dB.</CAPTION> <TR><TD><IMG WIDTH="419" HEIGHT="267" BORDER="0" SRC="img99.png" ALT="\begin{figure}\psfig{file=figs/fig01.03.ps}\end{figure}"></TD></TR> </TABLE> </DIV> <P> Still using <IMG WIDTH="19" HEIGHT="29" ALIGN="MIDDLE" BORDER="0" SRC="img96.png" ALT="$a_0$"> to denote the reference amplitude, a signal with linear amplitude smaller than <IMG WIDTH="19" HEIGHT="29" ALIGN="MIDDLE" BORDER="0" SRC="img96.png" ALT="$a_0$"> will have a negative amplitude in decibels: <IMG WIDTH="42" HEIGHT="32" ALIGN="MIDDLE" BORDER="0" SRC="img100.png" ALT="${a_0}/10$"> gives -20 dB, <IMG WIDTH="50" HEIGHT="32" ALIGN="MIDDLE" BORDER="0" SRC="img101.png" ALT="${a_0}/100$"> gives -40, and so on. A linear amplitude of zero is smaller than that of any value in dB, so we give it a dB level of <IMG WIDTH="31" HEIGHT="29" ALIGN="MIDDLE" BORDER="0" SRC="img102.png" ALT="$-\infty$">. <P> In digital audio a convenient choice of reference, assuming the hardware has a maximum amplitude of one, is <BR><P></P> <DIV ALIGN="CENTER"> <!-- MATH \begin{displaymath} {a_0} = {10^{-5}} = 0.00001 \end{displaymath} --> <IMG WIDTH="141" HEIGHT="26" BORDER="0" SRC="img103.png" ALT="\begin{displaymath} {a_0} = {10^{-5}} = 0.00001 \end{displaymath}"> </DIV> <BR CLEAR="ALL"> <P></P> so that the maximum amplitude possible is 100 dB, and 0 dB is likely to be inaudibly quiet at any reasonable listening level. Conveniently enough, the dynamic range of human hearing--the ratio between a damagingly loud sound and an inaudibly quiet one--is about 100 dB. <P> Amplitude is related in an inexact way to the perceived loudness of a sound. In general, two signals with the same peak or RMS amplitude won't necessarily have the same loudness at all. But amplifying a signal by 3 dB, say, will fairly reliably make it sound about one "step" louder. Much has been made of the supposedly logarithmic nature of human hearing (and other senses), which may partially explain why decibels are such a useful scale of amplitude [<A HREF="node202.html#r-rossing02">RMW02</A>, p. 99]. <P> Amplitude is also related in an inexact way to musical <A ID="1083"></A><I>dynamic</I>. Dynamic is better thought of as a measure of effort than of loudness or power. It ranges over nine values: rest, ppp, pp, p, mp, mf, f, ff, fff. These correlate in an even looser way with the amplitude of a signal than does loudness [<A HREF="node202.html#r-rossing02">RMW02</A>, pp. 110-111]. <P> <HR> <!--Navigation Panel--> <A ID="tex2html679" HREF="node10.html"> <IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next" SRC="next.png"></A> <A ID="tex2html673" HREF="node7.html"> <IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up" SRC="up.png"></A> <A ID="tex2html667" HREF="node8.html"> <IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous" SRC="prev.png"></A> <A ID="tex2html675" HREF="node4.html"> <IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents" SRC="contents.png"></A> <A ID="tex2html677" HREF="node201.html"> <IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index" SRC="index.png"></A> <BR> <B> Next:</B> <A ID="tex2html680" HREF="node10.html">Controlling Amplitude</A> <B> Up:</B> <A ID="tex2html674" HREF="node7.html">Sinusoids, amplitude and frequency</A> <B> Previous:</B> <A ID="tex2html668" HREF="node8.html">Measures of Amplitude</A> <B> <A ID="tex2html676" HREF="node4.html">Contents</A></B> <B> <A ID="tex2html678" HREF="node201.html">Index</A></B> <!--End of Navigation Panel--> <ADDRESS> Miller Puckette 2006-12-30 </ADDRESS> </BODY> </HTML>